
Phytoplankton Functional Groups Automatic Recognition

using Convolutional Neural Networks
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Abstract

Phytoplankton diversity and distribution are complex and crucial to solve. This relies on ade-
quate datasets to solve their heterogeneity and variability. Flow Cytometry has enabled to collect
significant phytoplankton datasets in quasi-real time. It counts the number of cells belonging
to each phytoplankton species or group of species sharing common optical characteristics, called
phytoplankton functional groups (PFT). However, raw data have to be manually post-processed
which is very time-consuming and may be a source of classification errors for which we provide
here an estimation.
As a result, there were many recent propositions to make this classification automatic based on
Machine Learning methods. However, most of these methods presents either a long training pro-
cess, are unable to predict the class of very small cells or need to manually design some features.
Our method is based on recent advances in Deep Convolutional Neural Networks and classify
Mediterranean phytoplankton functional groups thanks to optical curves provided by a pulse
shape recording flow cytometer. We show on a novel long and high frequency time series that our
model presents a high accuracy that seems not affected by infra-day cells cycles [exaggerated for
the moment]. It also exhibits a significant per class precision despite of the extreme imbalanced
nature of the data. Finally, the model seems also to be able to reuse features learnt on some par-
ticles to predict the class of particles coming from another location. Thus, it might be redeployed
in other Mediterranean geographic zones with minor adjustments.

∗robin.fuchs@mio.osupytheas.fr
†melilotus.thyssen@mio.osupytheas.fr
‡gerald.gregori@mio.osupytheas.fr
§denys.pommeret@univ-amu.fr
¶samuel.soubeyrand@inra.fr

1



1 Introduction

The datasets in Oceanography are conspicuous for
being large (with a high number of observations)
and of high dimension (comprising a substantial
number of variables). This makes oceanography
a very suited field for statistical analysis. This
is particularly the case of phytoplankton-related
data. Phytoplankton, under a unique denomina-
tion, actually contains several thousand species.
Some of these species share common optical char-
acteristics such as the size, the pigment content,
the habitat or biogeochemical features and can be
gathered in groups of species called phytoplank-
ton functional groups (PFTs).

The study of the PFTs is of primary impor-
tance given that the contribution of phytoplank-
ton to marine primary production, the amount
of underwater dissolved CO2 absorbed by phyto-
plankton cells per unit of time, is equivalent to
all of the primary terrestrial production. This is
the case even if phytoplankton cells represents less
than 1% of the terrestrial autotrophic biomass [9].
This means that phytoplankton has a very rapid
growth capacity (it can divide several times a day)
[add source] and therefore highlights the need for
high frequency observations to encompass their
morphological diversity and to correctly assess
the classification power of statistical models.

The development of pulse shape recording
flow cytometry has made possible a vast auto-
mated data acquisition on PFTs given that a flow
cytometer (FCM) can process up to 10,000 cells
per second. From each cell in the sample, the flow
cytometer is able to generate a set of curves which
represents the optical profile of their scatter and
fluorescence. After reprocessing, the oceanogra-
phers manually determine the different functional
groups existing in the data using a collection of
two dimensional cytograms. These operations are
however very time-consuming and their automa-
tion seems today necessary.

Automating classification tasks using statis-
tical methods, i.e. designing methods to auto-
matically assign a label to an observation based
on its features, has received special interest in
oceanography for the last twenty years. Con-
cerning phytoplankton classification (also called
phytoplankton group gating), most of the effort

seems to have been spent on image processing
and computer vision. One can for example cite
the count of coccoliths using shallow neural net-
works in the seminal work by Beaufort and Dollfus
(2004) [3] or more recently the works by Dunker
& al. (2019) [7] or by González & al. (2019) [11]
based on Residual Neural Networks and Transfer
Learning [22].

Automated recognition of PFTs from flow cy-
tometric optical curves was less explored with
some notable exceptions such as Malkassian and
al. (2011) [17] which classifies the species of phy-
toplankton by plunging these curves into a Fourier
basis and calculating distances between them.
This is also the case of the R package Rclustools
which implements existing and new statistical
methods as recent developments by Wacquet and
al. (2013) [21] to deal with the optical curves in
either a supervised, a semi-supervised or an un-
supervised manner.
Other works using Flow Cytometry data but not
on phytoplankton cells also exist as in del Barrio
and al. (2019) [1] where the authors create curves
templates and classify the observations curves
with respect to these templates using Wasserstein
distance and optimal transport.

Contrary to these works, we aim to automate
the cells count of functional groups and not the
count of the species. This task might be more
challenging as the morphological diversity among
a set of species is at least superior to the mor-
phological diversity among each species. The raw
data used for this classification are the flow cyto-
metric curves (FCCs) of each cell going through
the flow cytometer. Compared to phytoplank-
ton images, the size on disk of the 5 curves per
particle is approximately the same : 4.5kb per
observation. However, classifying and then count
the cells using FCCs presents a real advantage
because it can deal with particles smaller than
20 microns. On the contrary, the image resolu-
tion is not sufficient to obtain proper images of
such small particles. This is a real issue consider-
ing that the very vast majority of phytoplankton
particles in the in-situ samples are smaller than
this threshold. The second main advantage is the
shorter training process because of the absence
of transfer learning procedure [18], contrary to
the images that require to fine-tune very heavy
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networks such as Residual Networks [12].

In this work we use recent advances in now
standard Deep Convolutional Neural Networks.
These networks have known a very fast develop-
ment in image recognition and computer vision
during the last ten years starting with the sem-
inal works of Krizhevsky and al. (2012). [14].
This class of networks is here applied in order
to automate PFTs classification from FCM data.
This is a difficult task because of the morpho-
logical diversity evoked earlier, of the format of
raw data and due to the dramatically imbalanced
nature of datasets. These aspects also make man-
ual classification challenging for oceanographers
and make it nearly impossible to perform gating
with hourly data collected during several months.
Although manual gating of cells groups belong-
ing to several PFTs is well transmitted between
experts with a long time accepted consensus on
groups identification from cytograms, differences
between users exist. Assessments of the diversity
of experts classifications are hardly performed in
flow cytometric studies.

We begin this work by presenting the
data used and our methodology. The data
come from the FUMSECK campaign (DOI
10.17600/18001155) which occurred in off the
coast Ligurian Sea waters and from the Sea Water
Sensing Laboratory @ MIO Marseille (SSLAMM)
in coastal Mediterranean waters. Details are then
given about the manual gating process, about the
how an estimation of its error can be obtained and
a description of our predictive pipeline.
In section 3, the assessment of the manual gat-
ing error is presented and compared to the er-
ror obtained by our network and other Machine
Learning models. Evidence are then given that
our model can be used to predict long and high-
frequency time series and that it seems not af-
fected by seasons nor infra-day cellular cycles [ex-
aggerated for the moment]. Finally, we give in-
sights about the robustness of our model by using
the features learnt on a dataset and predicting ob-
servations from a different data source. Section 4
closes this work by analysis the limits of our work
and giving axes for future research.

2 Material and Methods

In this section, we first detail how the data are
collected, manually gated by FCM experts and
the strategy used to quantify the resulting error.
Then we dwell on the data pre-treatment and the
specification of our predictive pipeline.

2.1 Data presentation

All the data presented and used here have been
acquired with a Cytosense c© (CytobuoyTM, N.L.)
pulse shape recording flow cytometer. The gen-
eral principle of this flow cytometer is as follows:
a sample of water to be analyzed is pumped in
the flow cytometer from the environment studied.
The cytometer aligns the cells in suspension in
the sample one by one thanks to the generation
of a laminar net that generates an hydrodynamic
focus and makes them pass in front of a laser
beam. This method allows each cell or particle
to pass in front of a coherent laser beam. The
interception of this beam by the particles gen-
erates a set of optical profiles of diffusion and
natural fluorescence when pigments are present.
These optical profiles take the form of a set of
curves. The frequency of acquisition of curves of
the cytometer is 4 MHz which gives it a collection
capacity of barely 10,000 cells per second. The
datasets generated are therefore rapidly massive.

In our case the cytometer issues five curves:
the curvature curve, the red (FLR) and orange flu-
orescence (FLO) curves and the forward (FWS)
and Sideward scatter (SWS) (other cytometers
might have a different number of curves). Be-
cause of the high proportion of background and
electronical noise particles, a common practice is
to perform two types of data acquisitions using
two Red Fluorescence (FLR) thresholds: a low
one here denoted FLR6 and a high one denoted
FLR25. The lower threshold enables to count the
particles that have the smallest total red fluores-
cence (which are also the smaller particles). The
FLR25 enables to clear out the small particles in
order to better count the biggest ones. Then the
total count by class is simply the count of low
fluorescent particles in the FLR6 file and of high
fluorescent particles in the FLR25 file.

Hence, each observation is made of five curves
which length is closely linked to the size of the

3



particle (the bigger the particle the longer the
sequence). In order for all sequences to be com-
parable, the curves have been interpolated using
quadratic interpolation. Using truncated and
padded with zeros sequences as in Natural Lan-
guage Processing (NLP) has also been imple-
mented and led to poorer performance.

We have chosen a fixed length of 120 values for
each curve of all observations that corresponded
approximately to the third quartile of the distri-
bution of particles curves lengths. The influence
of this length choice on performance has not how-
ever been tested and could be in further research.
Once the curves resized, one obtains for each ob-
servation five curves of length 120 or alternatively
a 5× 120 matrix which a representation which is
given in Figure 1.

Figure 1: Matrix and curves representation of the
five curves of an observation

Concerning the origin of the data, two main
sources of data have been used in this work: The
FUMSECK Campaign data and the Endoume
Marine Station (SSLAMM) data.
The FUMSECK campaign was a cruise that took
place from April, 30, 2019 to May, 05, 2019 off
the Ligurian Sea. During this campaign, 610 cy-
tometer flow samples have collected at a depth of
two meters and represent barely ... particles.
The SSLAMM time series has started in Septem-
ber 2019 at the Endoume Marine Station in Mar-
seille. Some sea water is continuously pumped
at 10 meters from the coast and at a depth of
3 meters and is delivered unaltered into the lab-
oratory buildings where analyses are conducted.

A cytometer is making acquisitions into this wa-
ter flow every two hours, hence generating 12
FLR6 and 12 FLR25 files per day. Such an in-
frastructure has no equivalent in Europe and to
our knowledge in the World [is it true ?].

All the datasets presented here share the same
functional groups nomenclature. It is composed
of six phytoplankton classes: Prochlorococcus,
Synechococcus, Picoeukaryotes, Nanoeukaryotes,
Cryptophytes and Microphytoplankton. Two ad-
ditional classes have been added: noise particles
and airbbubles. Noise particles are actually very
heterogeneous: detritic particles stricto sensu,
phytoplankton predators that present a fluores-
cence, phytoplankton cells in decomposition...
etc. The airbubbles begin to appear in the cy-
tometer when some manual interventions have
to be performed. It is then more a class helpful
for machine monitoring rather than for purely
scientific purposis. As no definitive standardized
PFT nomenclature exists for the moment, this
nomenclature might evolve in the future to meet
interoperability needs.

In order to fit the models, for each application
the data were split in three parts: the training
the set, the validation and the test set. The mod-
els were trained on the training set, the choice
of their hyper-parameters done according to the
performance on the validation set and the final
performance assessment on the test set.

2.2 Manual gating methodology

In this subsection, the manual gating method-
ology used by experts is described. Then, we
present the methodology of the experiment con-
ducted to assess manual gating ranges of errors.

The raw data extracted by the
CytosenseTM FCM and the Cytoclus4 c© soft-
ware are series of 5 curves exhibiting variable
lengths. These raw pieces of information are hard
to visualize and it is to difficult to use them as
such for classification. Experts prefer rather to
summarize this signal by computing a single value
for each curve instead, typically the area under
the curve. Doing so, one obtain a point of di-
mension five for each observation. The dataset
can under this form be represented by a series
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of 2D projections. For example, using the area
under the curve for all of them one can plot the
Total Red Fluorescence against the Total Orange
Fluorescence as in Figure 3, then the Total Red
Fluorecence against the Total Forward Scatter
and so on.

This is this collection of 2D projections that
the experts use to perform the manual gating of
all the cells contained in each sample. The sam-
ples treated are very imbalanced between PFTs.
For example, the ratio between the most and the
less represented class in our data ranges between
104 and 105. Hence, the less represented particles
can be ”hidden” by the most represented ones
on the 2D scatter plots used by cytometrists to
identify the PFTs.
This can create significant biases in the estimated
count of these classes. For instance, in the FCM
datasets coming from Mediterranean waters there
are typically at most a few dozen of microphyto-
plancton particles while there are dozen of thou-
sands of synechoccocus particles. Hence, misclas-
sifying 10 particles of microphytoplancton could
result in a 30% error rate while misclassifying 10
particles of synechoccocus would be negligible.

This issue is a type of statistical data-
contamination and can have significant effects
on the patterns learnt by Machine Learning algo-
rithms. Without any estimation of this contam-
ination, it is impossible to disentangle the errors
coming from the data from the error coming from
the training process. We could not find an es-
timation of this phenomenon and conducted a
small study to give a raw assessment of the inter-
individual manual classification errors.

In our experiment, we have asked five experts
to classify SSLAMM data coming from three sam-
ples acquired at different seasons and time of the
day. They were given a list of the PFTs groups
existing in those samples. Once they have per-
formed the classification, it is possible to measure
the standard errors in the count of each functional
group which gives a good idea of the potential bi-
ases.

In parallel, they have been asked to gate
two additional acquisitions in which more cells
from under-represented PFTs have been artifi-

cially added. The interest of this second set of
gatings was twofold.
First, by giving the classes an almost equal vis-
ibility on 2D cytograms, we can test that the
under-representation of those cells is responsible
for higher errors, which is our base hypothesis. If
not, this could mean that these classes are also
more difficult to identify intrinsically than highly
represented PFTs.
Secondly, it enables to create a robust training set
for our network by keeping only the particles that
were given the same labels by all experts. Using
rebalanced datasets for this goal rather than gen-
uine ones avoids to make the experts label hun-
dreds of files to have enough instances of low rep-
resented PFTs.

2.3 Prediction pipeline presenta-
tion

The core of the predictive pipeline is a Deep Con-
volutional Neural Network initially designed for
image recognition. The general idea of such a
network is to learn a series of filters that detect
some patterns in images and help to discriminate
between the classes. More formally, these filters
are tables of coefficients iteratively used to com-
pute convolutional operations on the data going
through the layers. Compared to Dense layers the
convolutional ones relies on the assumption that
regions in the images conveys useful information
and that close pixels often carry very redundant
information. As a result, the total number of pa-
rameters of the model is reduced and the training
of the model is kept tractable even for big three
color channels (Red, Green, Blue) images. Once
the features extracted by the convolutional net-
works, one can use Dense layers at the end of the
network to perform the classification itself, which
is what is conducted here.

A l × L color image is represented by l × L
coefficients for each of the three RGB color chan-
nel i.e. l× L× 3 integer coefficients ranging from
0 to 255. In the case of black and white images
it is a l × L × 1 or l × L table. In our case, our
network is not applied to images but to 5 × 120
matrices of float coefficients which therefore share
the same shape as black and white images. Hence,
the same networks as for images can be used with
minor modifications.
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An alternative option rather than using the
five stacked raw curves is to generate the im-
ages of each curve and to use these 5 images per
observation as input. Yet, taking the curves im-
ages actually dilutes the signal held by the curves
among a very substantial number of white pixels.
The signal was then too hard to perceive for the
network and resulted in network training failures.

Thus, we decided to keep the matrix repre-
sentation that is the raw signal itself (up to a
quadratic interpolation) rather than manually de-
signed features. We expect this very rich signal
to be highly efficient for classification purposes
as information used by oceanographers is much
more simplified and enable the manual classi-
fication. The model architecture is presented
modelspe. Features are first extracted by three
convolutional layers. Then, local averages of the
coefficients are taken by a Global Average Pool-
ing layer relying on the same idea that a part
of the signal is redundant if taken at a too fine
level. These ”averaged features” are then treated
by a series of dense layers. The dropout layers
enable not to train every neuron of the layer. It
avoids the network to become too specialize over
a dataset, which is known as ”model overfitting”
in Machine Learning.
At the end of the dense layers a softmax layer is
computing the probabilities that an observation
belongs to each class and the loss of the model is
computed.

The loss is measuring the gap existing between
the class probabilities that the model outputs and
the actual class of the observation. This gap rep-
resents an error that is then back-propagated to
update the parameters of the network accordingly.
The most common loss used for single-label multi-
variate classification is the negative log-likelihood
or categorical cross-entropy (negLL). Its expres-
sion is given by :

negLL = −
K∑
k=1

n∑
i=1

(yi,k ∗ log(p̂i,k))

with i ∈ [1, n] the observation index, k ∈ [1,K]
the class index, yi,k equals 1 if observation i is in
class k and p̂i,k the probability that observation i
is in class k predicted by the model.

From the expression, it appears that this loss
gives the same weights to all errors whatever the
classes of the observations. This is not particu-
larly suited for very imbalanced datasets as the
network tends to focus only on accurately pre-
dicting the highly represented classes to ensure
a good average accuracy. In this respect, three
extensions of this loss have been used here: the
weighted categorical loss entropy, the focal loss
[15] and the class-balanced focal loss [5] in order
to achieve a good overall accuracy but also a good
per-class accuracy.
The weighted negative Log-Likelihood loss
(WnegLL) is a straightforward extension of the
negLL which gives more weights to the errors
performed on some classes. In general the less
represented classes are chosen to be overweighted.
However, this approach is very sensitive to the
way the weights are computed [add source]. The
most common practice is to set those weights to
1
nk

or to 1√
nk

, with nk the number of observa-

tions in the class k. Intuitively as our data are
extremely imbalanced, using 1

n might lead to too
small weights for the most represented classes and
we expect the second one to perform better.

Over-weighting very unrepresented data
hinges on the hypothesis that rare classes are
difficult to predict. This claim can be justified
by the fact that bigger particles tend to present
a wider range of morphological diversity and that
they are also the least represented PFTs. How-
ever, in order not to rely on this hypothesis nor
on the parametric form of the weights formula we
have used the newly introduced focal loss (FL)
its generalization, the Focal Class-Balanced loss
(FCBL), which have the following expressions:
[check the formulas].

FL = −
K∑
k=1

αk

n∑
i=1

yi,k(1− p̂i,k)γ log(p̂i,k)

and

FCBL = −
K∑
k=1

1− β
1− βnk

n∑
i=1

yi,k(1−p̂i,k)γ log(p̂i,k)

nk is the number of observations of class k,
α is a class-dependent weight acting in the same
spirit as the WnegLL weights. γ is a focusing pa-
rameter, it defines how little the contribution of
easy-to-predict observations is. β controls how the
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re-weighting depends on class frequency: β = 0
corresponds to negLL and β = 1 correspond to
WnegLL with the weights equals to 1

nk
.

From the expressions below, it appears that
the focal loss decreases the contribution of easy
well-classified observations i.e. the observations
that exhibit a p̂i,k close to one. It is done through
the training thanks to the ”modulating” factor
(1 − p̂i,k)γ combined with some weights α as in
the WnegLL. The FBCL automates in some way
the choice of α, but also relies on a new parame-
ter β. We are implementing the three losses, give
the hyper-parameters value chosen in Appendix
B and compare the performances obtained in the
results section.

The loss is a key component of the model and
is the main way we have decided to treat the
fact that the data were very imbalanced. In ad-
dition to the loss, undersampling methods have
also been used to slightly reduce the gap between
PFTs in order to have both enough instances
per class and a tractable total number of obser-
vations in the dataset. Random undersampling
strategy, i.e. picking a random subset of observa-
tions in the most represented class was used here
given that it gave similar performance results as
more advanced under-sampling techniques such
as Edited Nearest Neighbors or Tomek’s links [2].
The use of these last techniques was in addition
not straightforward due to the very particular
functional form of the data.

Beyond the choice of the loss, an important
choice is the one of the optimizer which deals with
how the parameters of the network are updated
with respect to the loss. We have here bench-
marked two optimizers: Adam and its extension
Ranger. Ranger comes from the combination of
two very recent publications: RectifiedAdam [16]
and Lookahead [23].

In order not to be stuck in bad local max-
ima, it is a common practice to slowly update
the parameters of the models at the beginning of
the training, where really promising parameters
regions are not for the moment identified. This
adaptation rate of the parameters with respect to
the loss is called the learning rate of the model
and is hence often chosen to be small in the early

stages of the training process [19]. Radam adapts
the learning rate to avoid the learning rate vari-
ance to grow too substantially, which according
to the authors is often very detrimental to the
learning process. On the other hand, Lookahead
enables the network to get a better understanding
of the loss topology. In order to do so, two sets
of weights are designed by Lookahead: a faster
set of weights that are frequently updated to ”ex-
plore” the loss surface and a slower set of weights
(less frequently updated) to ensure the stability
of the learning process. The faster set of weights
is updated using not all the data but only a set
of several observations batches to get a raw idea
of promising regions to explore. In the ranger
case those fast weights are updated thanks to the
Radam optimizer.

As for the losses and most of the parts of the
neural networks, the behaviour of the optimizer
is also ruled by a set of hyper-parameters that
need to be chosen by the user. The number of
possible combinations is far too high for all the
combinations to be tried and then pick the best
network specification.
One popular approach relies on Bayesian Hy-
peroptimisation algorithms [4] which are imple-
mented in our case in the Python library Hyperas
(Hyperopt for Keras). The idea of Hyperoptimi-
sation methods is to consider hyperparameters as
statistical random variables with a prior and to
identify posterior regions that presents a low loss
value. Hence, some draws are taken from the prior
distributions, the model is evaluated and low loss
regions are identified and focused on. It avoids
to spend very significant computational efforts on
non-promising regions of the hyper-parameters
space as it is often the case using standard line
search.

Once the network has output its predictions,
we perform of a post-processing to account for the
special status of the noise class. The noise parti-
cles are defined by the fact that they are not phy-
toplankton cells rather than as a biologically con-
sistent class. Conceptually by creating this noise
class, we are here making a two stages procedure
in a single step. The first stage would be to pre-
dict if the particle is a phytoplankton cell or not.
If it is not, the particle would be classified as noise.
If it is, then a second step would be performed to
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determine its class among the other classes of the
nomenclature.
Our experiments show that in a vast majority of
times, when the network is not sure about the
class of a particle it is because it is not a phyto-
plankton particle but a noise one.
As a result, all the particles presenting low pre-
dicted probabilities have been assigned the noise
label rather than the label of the highest probabil-
ity class. Low confidence probabilities threshold
have been tuned on a separate dataset. This post-
processing is not theoretically very well-funded
but really gave a significant performance gain.
Re-designing the classes of the nomenclature to
break down the noise class into several more rele-
vant ones would be more rigorous. On the other
hand, using a one-vs-all probability output layer
rather than a softmax at the end of the network
could enable to implement the idea of the two-
stage procedure and will be more founded [give
more details here].

3 Results on in-situ data

This section presents an estimation of the manual
gating error range and puts it in perspective with
the results obtained by our model in different con-
texts. Three cases of application are considered.
First, the model is benchmarked again other mod-
els on the FUMSECK campaign data in order to
illustrate its predictive power. Then, predictions
are made upon samples acquired at the SSLAMM
in order to show the invariance of our network
to seasonality and infra-day shape changes of the
cells. Finally, the model was trained on FUM-
SECK data to predict Endoume samples to illus-
trate its generalisation power.

3.1 Manual gating error estimation

[This experiment has not been performed yet, the
text will change accordingly]
The results of the manual gating on the three
SSLAMM acquisitions is given in Figure 3.1. The
”mean count” line gives the per class count ob-
tained in average by the five experts and the next
line gives the standard errors of these counts.
Hence the closer to zero the standard error is,
the more the classification is the same for all re-
searchers for this class.

PFT Airbubbles Cryptophytes Microphytoplankton

Mean count

Standard Error

PFT Nanoeukaryotes Noise Picoeukaryotes

Mean count

Standard Error

PFT Prochlorococcus Synechococcus

Mean count

Standard Error

[Add comments about the two additional
gated acquisitions and how the number of cells
per class seems to influence the std].

3.2 Model benchmark on FUM-
SECK data

[Should we have a robust dataset for FUMSECK
data also ?]
In this section, we train the our model over 25.000
observations [to precise] taken from FUMSECK
data. The validation is made of ... particles and
the test set of ... cells. The repartition of the
samples between the three sets was perfectly ran-
dom.
The CNN has been benchmarked against other
supervised models in order to illustrate its per-
formances. The algorithms compared are Light
GBM (LGBM) [13], Feed Forward Neural Net-
work (FFNN) [10], the k-Nearest Neighbors
(kNN) [6] and Support Vector Machines (SVM)
[20]. LGBM has been chosen because it is in prac-
tice very used by Machine Learning practitioners
in several fields of application and has won recent
several Kaggle challenges (as it was the case of
Random Forests models earlier on). The last three
models have been picked as they were the ones
implemented in the RclusTool package, which is a
package implementing Machine methods applied
to flow cytometry data.

However, these models could not process the
raw signal as it is the case in our model and there
is a need to manually compute some features.
The presented results have then to be consid-
ered by keeping in mind that the choice of the
features created from the signal highly influence
the performances of the models. We rely on the
10 features per curve created by default by the
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CytoClus4 c©software. The feature list is given in
Appendix C.

The metrics reported for each class and each
algorithm are the precision and the recall. The
precision is the proportion of particles actually
belonging to class k among all those identified as
belonging to class k by the algorithm. The recall
is the proportion of particles effectively belonging
to class k among all the particles of class k exist-
ing in the dataset.
There is a precision / recall arbitration and ob-
taining precision and recall close to 1 constitutes
the horizon of any supervised algorithm. For ex-
ample, an algorithm that would predict ”noise”
for all particles would have a recall of 1 and rela-
tively poor precision for the category ”noise”.

The following tables report the results ob-
tained by the five models for each data class.

PFT Airbubbles Cryptophytes Microphytoplankton

Model/Metric Precision Recall Precision Recall Precision Recall

CNN

LGBM

FFNN

kNN

SVM

PFT Nanoeukaryotes Noise Picoeukaryotes

Model/Metric Precision Recall Precision Recall Precision Recall

CNN

LGBM

FFNN

kNN

SVM

PFT Prochlorococcus Synechococcus

Model/Metric Precision Recall Precision Recall

CNN

LGBM

FFNN

kNN

SVM

3.3 Prediction of Endoume Time
Series data

This section illustrates the ability of our model to
be deployed in production and to provide accu-
rate estimates of the count of each class on a daily
basis. The model was used to predict the count
of each PFT contained in each FLR6 and FLR25
files. The time series aspect of the data is here
not taken into account and all files are treated
as independent points. The training set, valida-
tion set and test set were made of respectively
12, 2 and 2 acquisitions (hence 24, 4 and 4 files)
chosen to be representative of different months

and different time within the day. Once the best
specification chosen, the model was applied to the
whole series for prediction. Figure 3.3 presents
the time series obtained with manual counts and
automatic count for the synechococcus, the noise
and the nanoeucaryote particles.

[labels too small and the end of the time series
is not predicted]

Figure 2: Manual and automated counts predic-
tion for synechococcus, nanoeukaryotes and noise
particles respectively

The noise and synechococcus particles are
well counted whereas the model tends to largely
overcount the nanoeukaryotes. Looking at the
confusion matrix, it reveals that a part of the
noise is actually taken to be nanoeukaryotes [to
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check]. [It advocates once again for a nomencla-
ture change].
What is striking is that the quality of the pre-
dictions does not seem to vary with the hour of
the day [provide zoomed image to check] nor the
month on which there are performed. It means
that our predictions are not influenced by the cell
divisions that might occur at an infra-day fre-
quency.

From these predicted time series, it is possible
to compute the total diffusion and fluorescence of
all the PFTs. These quantities are particularly
useful for oceanographers to assess local carbon
primary production. [Plot the estimated diffusion
and total fluorecence over the period].

3.4 Estimation of the generaliza-
tion power of the model

Finally, we provide an illustration of how general
the features learnt by the model are by choosing
two different data sources for training and testing
the model.

The model is here trained on SSLAMM data
sampled a few meter from the coast to predict
FUMSECK counts which data are sampled fur-
ther away off the coast. The SSLAMM training,
validation and test sets are the same as in the pre-
vious section. Figure 3 presents a 2D cytogram of
the Total Red Fluorescence (area under the curve)
as a function of the Total Orange Fluorescence.
This representation is often used by cytometrists
to separate ... from ...

Figure 3: Manual vs. automated count

[Image to replace with the new one and then
add interpretation]

A common way to perform and visualize man-
ual gatings for cytometrists is to draw poly-
gons, called selection sets or decision boundaries,
around the identified groups. We reconstitute
these selections sets, by computing the convex hull
over our prediction and plot the actual versus the
predicted selection sets. As by definition the con-
vex hull is very sensitive to outliers, the predicted
selection sets are computed without considering
the 10% most extreme points for each class. Fig-
ure 4 present the predicted versus manual selec-
tion sets.

Figure 4: Comparison of the manual and pre-
dicted decision boundaries over a FLR6 file

[Change with the new specification bound-
aries]

4 Discussion

Our work aimed at providing a better under-
standing of the magnitude of manual classification
biases. It confirms that less represented groups
suffer more from these biases than the best rep-
resented ones [to check]. This highlights the need
for data reviewed by several experts in order to
obtain good ground-truth data for model training.
Such multi-reviewed datasets are more and more
popular in the Machine Learning community, the
best example being the ImageNet repository [8].
As a result, we call for the creation of an equiva-
lent repository for cytometric curves PFT recog-
nition.
This is all the more so necessary that the predic-
tion error obtained by our network lies in the same
error range as manual classification [to check].
Hence, better data may be even more useful than
exploring better model specifications in order to
achieve better performance.

Through this work we propose a full PFT pre-
diction pipeline able to make quasi-real time PFT
identification at the cell level. The total train-
ing time of our model is of less than a minute
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for a training set of nearly 45,000 observations
on Google Collab GPU [give more details about
machine hardware] in contrast to several hours
or days of Residual Networks transfer learning on
images as in González & al. (2019) [11]. The data
pre-processing and in particular the interpolation
of the curves is actually the slowest part of our
automated pipeline (between 1 and 2 minutes)
whereas the prediction themselves take only a
few seconds. This is explained by the fact that
the curves are for the moment interpolated in a
sequential manner, observation per observation.
More efficient methods have to be implemented
to reduce this computational bottleneck.

Thanks to new software developments, the
pipeline will soon be able to feed the predictions
back into the cytometric software CytoClus c©and
enable the oceanographers to manually modify the
automated selection sets of the PFTs that seem
erroneous to them. In this respect, our pipeline
could also be used as a turnkey pre-gating tool
made to speed up the manual classification tasks.

Concerning the network itself improvements
are possible. Our methodology is based on a
”classify and count” approach which is strongly
criticized by González & al. (2019) [11]. Indeed,
our pipeline attributes each cell to a PFT and then
count the number of cells in each PFT. González

& al. (2019) [11] present a reformulation of the
cells count problem, called ”quantification prob-
lem” in the literature, and show that training a
series of one-versus-all simple predictors on fea-
tures extracted from the network is better suited
for this task. This will be investigated in future
research.

Finally, this work is a preliminary work in or-
der to study the behaviour of the PFT dynam-
ics on Endoume data. Indeed, with a FLR6 and
FLR25 acquisitions every two hours, the data load
is hardly treatable by a single person and needs to
be automated. The data collection process at the
SSLAMM is relatively independent of meteorolog-
ical conditions compared for instance to cruises
that can take place only in case of reasonable con-
ditions. These data will thus enable to track or-
ganisms reactions over a very wide range of envi-
ronmental conditions and especially extreme ones
during which little is known.
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A Model specification used

Figure 5: Model specification

B Hyperparameters chosen

This section presents the final architecture choice used for all the results presented below. The best
performance was obtained for the focal loss and the Ranger optimizer. The following table presents
the main hyperparameters of our model.

Hyperparameters α batch size Dropout γ Optimizer Radam learning rate Lookahead slow step size Lookahead Sync period

Value 6.980E-4 256 5.093E-3 2.046 Ranger 3.810E-3 2.074E-1 10
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C Listmode features

For each optical curve the CytoClus4 c© software can output the following features:

• Asymmetry

• Average: The average value of the curve

• Center of gravity

• Fill factor

• Inertia:

• Length: The length of the curve

• Maximum: The maximal value of the curve

• Number of cells:

• Time Of Flight:

• Total: The area under the curve

D Noise selection threshold
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