
Automatic recognition of flow cytometric phytoplankton
functional groups using Convolutional Neural Networks

Robin Fuchsa,b, Melilotus Thyssenb,1, Véronique Creachc,
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Machteld Rijkeboeri, Gérald Grégorib, Denys Pommereta,j,k,l

aAix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France; bAix Marseille Univ, Université
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Abstract

The high variability of phytoplankton distribution has been unraveled by high fre-
quency measurements. Such a resolution can be approached by automated pulse-shape
recording flow cytometry (AFCM) operating at hourly sampling resolution. AFCM
records morphological and physiological traits as single-cell optical pulse shapes that can
be used to classify cells into Phytoplankton Functional Groups (PFG). However, the asso-
ciated manual post-processing of the data coupled with the increasing size and number of
the datasets is time consuming and carries sources of error. Machine learning models are
now increasingly used to run automatic classification. Yet, most of the existing methods
either present a long training process, need to manually design some features from the
raw optical pulse shapes or are dedicated to images only. In this study, we present a
Convolutional Neural Network (CNN) to classify PFGs resolved by flow cytometry using
the pulse shapes collected by AFCM. The uncertainties of manual classification were first
estimated by comparing experts manual gatings on Redpicopro, Orgpicopro, Redpicoeuk,
Rednano, Orgnano, Redmicro and Orgmicro phytoplankton cells. Consensual particles in
individual PFG were used to train and validate the CNN. The CNN obtained competitive
performances compared to the models used in the literature, and presented significant
generalization power concerning the sampling area, the AFCM hardware and settings.
Finally, we assessed the ability of this classifier to predict phytoplankton counts at a
Mediterranean coastal station and from a cruise in the South-West Indian Ocean, pro-
viding further comparison with the manual classification of an expert over three months
long periods.

Keywords— phytoplankton | pulse-shape recording flow cytometry | automatic classification |
deep learning | high frequency
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Introduction

Phytoplankton cells are major actors in ma-1

rine environments and in biogeochemical cy-2

cles. The amount of seawater dissolved CO23

absorbed by phytoplankton cells per unit of4

time, called primary production, is estimated5

to be equivalent to all of the primary ter-6

restrial production. This is the case even if7

they represent less than 1% of the total au-8

totrophic biomass (Field et al. 1998), sug-9

gesting a rapid growth capacity and high10

turnover rates (Fowler et al. 2020). Cur-11

rently, models estimating primary production12

in the ocean present a wide uncertainty range13

(Carr et al. 2006; Saba et al. 2011; Buitenhuis14

et al. 2012), mainly due to a lack of reso-15

lution of the datasets collected (Lévy et al.16

2012). Indeed, the heterogeneous distribu-17

tions of phytoplankton combined with a high18

structural and functional diversity highlight19

the need for infra kilometer spatial resolu-20

tion and infra hour temporal resolution (Ka-21

vanaugh et al. 2016).22

Phytoplankton biomass and distribution23

are listed as Essential Ocean Variables (EOV)24

(Miloslavich et al. 2018), but datasets with25

resolution inferior to 10km are scarce. Auto-26

mated pulse-shape recording flow cytometry27

(AFCM) (Dubelaar et al. 1999; Dubelaar and28

Gerritzen 2000) enables vast automated data29

acquisition with hourly sampling strategies30

on several important size and pigment-related31

phytoplankton groups. AFCM is now in-32

volved in numerous oceanographic field stud-33

ies and benefits from the growing scientific34

interest for automated single cell approaches35

(Boss et al. 2020) in monitoring programs.36

A dedicated vocabulary with its definition37

has been published by a wide group of ex-38

perts to describe the most common groups39

observed by flow cytometry in natural sea-40

waters, and this nomenclature will be used41

in this manuscript (http://vocab.nerc.ac.42

uk/collection/F02/current/).43

Phytoplankton cells are detected using the 44

emission of fluorescence due to the excitation 45

of chlorophyll (red fluorescence) and acces- 46

sory pigments (orange fluorescence of phyco- 47

erythrin, for instance). AFCM generates a 48

set of pulse shapes or flow cytometric curves 49

(FCCs) which represents the optical profiles 50

of scatter and fluorescences emitted by each 51

particle (cell) when crossing the 488 nm laser 52

beam. Scatter signals collected at small and 53

large angles (forward scatter (FWS) and side- 54

ward scatter (SWS) respectively) are related 55

to the cell size and structure (granularity), 56

while red (FLR) and yellow-orange fluores- 57

cence (FLO or FLY) signals are reflecting the 58

pigment nature and content of the cells. From 59

the difference between left angled and right 60

angled FWS pulses, a fifth signal named Cur- 61

vature is extracted. Instruments can process 62

up to 10 000 cells per second thanks to a 63

frequency acquisition of 4 MHz, with sam- 64

pled volume up to 5 mL routinely. After 65

data collection, AFCM users generally manu- 66

ally gather cells sharing similar optical finger- 67

prints into groups using multiple sets of two 68

dimensional projections (cytograms). Groups 69

recognition and identification are based on 70

seminal papers (Olson et al. 1985; Chisholm 71

et al. 1988; Green et al. 1996; Jacquet et al. 72

2002; Metfies et al. 2010; Ribeiro et al. 2016; 73

Hamilton et al. 2017; van den Engh et al. 74

2017; Marrec et al. 2018) describing Red- 75

picopro, Orgpicopro, Redpicoeuk, Rednano, 76

Orgnano characteristics. In addition to these 77

groups, Redmicro and Orgmicro cells can be 78

counted by AFCM and identified to a coarse 79

taxonomic level (typically up to the genus) 80

using recent integration of image-in-flow de- 81

vices (Dugenne et al. 2014). These size and 82

pigment-related groups belong to several phy- 83

toplankton functional groups (PFG), since 84

they fit the initial definition of sets of species 85

sharing similar ecological and biogeochemi- 86

cal functionalities (Le Quere et al. 2005), and 87

will hereafter be identified as cytometric PFG 88
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(cPFG).89

Manual gating is often both time-90

consuming and error-prone, as it relies91

on 2D projections and interpretations of92

simplified descriptors of the complex raw93

optical profiles (such as pulse maximum94

height, area under the curve, pulse width) by95

individual AFCM experts. The spread of this96

technology will generate datasets too large97

to be manually processed, constraining the98

collection of valuable high frequency cPFGs99

datasets. In order to facilitate the work of100

an increasing number of AFCM users and101

decrease the uncertainties linked to manual102

gating, the classification of cPFGs has to be103

semi- or fully automated. The automation104

can be achieved using supervised machine105

learning methods that assign a label to an106

observation based on its characteristics, a107

task named classification.108

In the case of phytoplankton, automatic109

classification generally relies on image pro-110

cessing and computer vision. One can for111

example cite the count of coccoliths using112

shallow Neural Networks (Beaufort and Doll-113

fus 2004) or more recent works based on114

Residual Neural Networks and transfer learn-115

ing (Yosinski et al. 2014) in order to classify116

images from diverse laboratory cultures and117

in situ monitoring (Dunker 2019; González118

et al. 2019). However, cameras resolution is119

relatively low for the identification of pico-120

nanophytoplankton size classes, which more-121

over show limited morphological diversity. As122

such, using the FCCs offers an alternative123

since it deals also with these small parti-124

cles. A second main advantage in working125

on the automatic classification of optical pro-126

files is the shorter training process due to the127

absence of transfer learning (Pan and Yang128

2009) required to fine-tune heavy Neural Net-129

works like Residual Networks (He et al. 2016)130

for image recognition.131

Automatic recognition of cPFGs from the132

FCCs has received less attention than image-133

based identification and can be gathered in 134

two main types of approaches. The first 135

family of approaches applies machine learn- 136

ing methods on features computed on the 137

FCCs (for example the mean, the area un- 138

der the curve, or the length of each FCC). 139

Boddy et al. (1994) started to use neural 140

methods to classify cells into species. Wac- 141

quet et al. (2013) developed new statistical 142

methods to deal with the features of the FCCs 143

and implemented them along with existing 144

statistical methods in the R package Rclus- 145

Tool. Thomas et al. (2018) and Schmidt 146

et al. (2020) used Random Forests to re- 147

spectively discriminate between phytoplank- 148

ton cells of different populations and between 149

phytoplankton and non-phytoplankton parti- 150

cles. Abdelaal et al. (2019) used Linear Dis- 151

criminant Analysis (LDA) and present per- 152

formances outperforming Deep Learning ap- 153

proaches. 154

The second family of approaches relies on 155

the entire FCC signal to perform classifica- 156

tion. This is the case of Malkassian et al. 157

(2011) that plunged the FCCs into a Fourier 158

basis and calculated distances to discriminate 159

between populations. (del Barrio et al. 2019) 160

created curves templates to classify AFCM 161

non-marine cells using Wasserstein distance 162

and optimal transport. Finally, (Caillault 163

et al. 2009) relied on the Elastic Matching 164

coupled with standard classifiers. We be- 165

lieve that this second family of approaches 166

can take advantage of the whole signal rather 167

than using some hand-designed descriptors 168

chosen by the user. As a result, our method 169

belongs to this second class of approaches. 170

In this article, we applied for the first time 171

Convolutional Neural Networks (CNN) on 172

pulse shapes recorded by AFCM to automate 173

cPFGs classification as described in Figure 1. 174

CNN have known a fast development in im- 175

age recognition and computer vision during 176

the last ten years, starting with the seminal 177

work of Krizhevsky et al. (2012). Once in- 178
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Figure 1: Explanatory scheme of the predictive pipeline. (1) Particles are sampled from
seawater by AFCM. (2) The five flow cytometric curves (FCCs = SWS, FWS, FLR, FLO,
Curvature) generated for each particle as they cross a laser beam are interpolated to a fixed
length and stacked together into matrices. (3) The CNN predicts the class of each particle
using Convolutional layers (red) and Dense layers (blue). (4) The number of particles per
group (phytoplankton or background noise) is computed and returned.

terpolated and stacked together as matrices,179

the FCCs are analogous to images and can be180

used to train a CNN, rather than computing181

features on the FCCs. We show the general-182

ization power of the method on two instru-183

ments with datasets collected in the South-184

West Indian and Southern oceans and in the185

coastal and open Mediterranean sea.186

As CNNs rely on robust datasets, individ-187

ual experts were asked to manually assign a188

cPFG to particles from samples collected in189

the different datasets collected. We assessed190

the heterogeneity between experts classifica-191

tions and built consensual datasets to evalu-192

ate automatic classification models. The per-193

formances of four benchmark automatic clas-194

sification models along with the CNN were195

compared. Finally, the trained CNN was196

used to generate predictions spanning three197

months sampling in a coastal station of the198

Mediterranean Sea and two months in the199

South-West Indian Ocean, both at a two200

hours sampling frequency. The robustness201

and extremely fast process of the CNN ap-202

plied open the way to real time cPFG analy-203

sis.204

Material and procedures 205

Data collection 206

Data Origin 207

In situ AFCM datasets were collected at the 208

SeaWater Sensing Laboratory At MIO Mar- 209

seille (SSLAMM data), France, a coastal ma- 210

rine Mediterranean station, between Septem- 211

ber 2019 and December 2019, and onboard 212

the research vessel Marion Dufresne II, from 213

11 January to 8 March 2021, in the frame 214

of the MAP-IO project (University of la 215

Reunion) during the GEOSCAPE SWINGS 216

cruise (SWINGS data). Two distinct Cy- 217

toSense flow cytometer (Cytobuoy b.v.), here 218

after identified as SSLAMM-AFCM, and 219

MAP-IO-AFCM were deployed. 220

For both datasets, seawater was continuously 221

pumped in situ and the flow cytometers ran 222

automated acquisitions scheduled every two 223

hours. The SSLAMM coastal seawaters was 224

gently pumped with a VerderFlex40 peri- 225

staltic pump at 10 meters away from the coast 226

at a depth of 3 meters, and was delivered 227

unaltered into the laboratory where analy- 228

ses were conducted. Onboard the Marion 229

Dufresne II, the seawater was collected from 230

the underway clean seawater supply pumped 231

at 7 m depths, using a centrifugal pump. 232
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Automated pulse-shape recording flow233

cytometry234

The two automated CytoSense flow cytome-235

ters (Cytobuoy b.v.) run similarly in both236

conditions and sampled semi-continuously237

seawater from the flow-through seawater238

arrival. The CytoSenses pumped samples239

from a dedicated external chamber of 200 ml.240

The volume analyzed for each sample was es-241

timated using a calibrated peristaltic pump.242

Before entering the flow cell, the sample was243

surrounded by a 0.1 µm filtered seawater244

sheath fluid and the generated laminar245

flow aligned each particle prior to cross a246

488 nm laser beam (Coherent, 120 mW ).247

Both instruments recorded the optical pulse248

shapes emitted resulting in forward scatter249

(FWS), sideward scatter (SWS), and two flu-250

orescences. The SSLAMM-AFCM collected251

wavebands of > 652 nm (red fluorescence,252

FLR) and between 552 − 652 nm (orange253

fluorescence, FLO). The MAP-IO-AFCM254

collected wavebands between 668 − 726nm255

(FLR) and 516−650nm (yellow fluorescence,256

FLY). Particles were recorded in the size257

range < 1 − 800 µm in width and up to a258

few mm in length for chain forming cells.259

These optical profiles take the form of a set260

of curves hereafter called flow cytometric261

curves (FCC).262

263

Laser scattering at frontal angles (FWS)264

was collected by two distinct photodiodes to265

check for the sample core alignment. Differ-266

ence between left and right photodiodes sig-267

natures generates the Curvature curve. To268

follow the stability of the flow cytometers,269

2.0 µm fluorescing polystyrene beads (Poly-270

science ®) were regularly analyzed. Silica271

beads (1.01 µm, 2.56 µm, 3.13 µm, 5.02 µm,272

7.27 µm in diameter, Bangs Laboratory®)273

were also used for size retrieving estimates274

from FWS signals.275

Because of the current memory and276

computation limitations, optimally sampling 277

the entire size range of the phytoplankton 278

community in natural marine waters require 279

some compromises: to collect small cells 280

such as Orgpicopro and Redpicopro cells, the 281

AFCM settings were set on high sensitivity 282

(red fluorescence trigger threshold set on 283

6 mV (FLR6) for SSLAMM-AFCM and on 284

5 mV (FLR5) for MAP-IO-AFCM). As a 285

result, the sample was filled by a majority 286

of small and/or dimly fluorescent particles 287

and electronical background noise, hereafter 288

simply called noise. Since the smallest phy- 289

toplankton cells are the most abundant in 290

natural samples, they were correctly counted 291

in small volumes between 0.5 ml and 1 ml. 292

293

In order to collect the largest but less con- 294

centrated cells, a second protocol was ap- 295

plied with a red fluorescence trigger threshold 296

(high trigger level) set up to 25 mV (FLR25) 297

for SSLAMM-AFCM, and to 20 mV (FLR20) 298

for MAP-IO-AFCM and a volume analyzed 299

reaching 5 ml. Doing so, the small par- 300

ticles and background noise generating ac- 301

quisition limitations were not recorded any- 302

more. Except that they use two different 303

thresholds, the two protocols (FLR5/FLR6 304

and FLR20/FLR25) used the same AFCM 305

settings (same sample pump speed, similar 306

filter mesh sizes, same optical chamber, sim- 307

ilar sampling frequency). 308

Finally, the total number of Orgpicopro and 309

Redpicopro cells was computed from the 310

FLR5/FLR6 files and the total number of 311

Orgnano, Redpicoeuk, Rednano and micro 312

cells was computed from the correspond- 313

ing FLR20/FLR25 files. Raw datafiles were 314

manually gated by experts using the Cyto- 315

Clus4© software (Cytobuoy b.v.). 316
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Manual gating methodology and317

heterogeneity estimation318

The raw data collected by the AFCM are319

composed of series of five curves exhibiting320

variable heights, areas and lengths. Experts321

use a dedicated software, CytoClus4©, to322

summarize this signal by computing a single323

value for each curve, typically the area under324

the curve or the maximal value of the curve.325

Doing so, one obtains a point of dimension326

five for each observation and the dataset can327

be represented by a series of 2D projections.328

For example, one can plot the Total FLR329

(the area under the FLR curve) against330

the Total FLO/FLY (the area under the331

FLO/FLY curve) to separate Orgpicopro and332

Orgnano from red only fluorescing particles.333

Total FLR vs Total FWS are commonly334

used to separate Redpicoeuk, Rednano and335

Micro size classes, while Total FLR vs Total336

SWS (or Maximal height of SWS) can help337

in gating the Redpicopro group.338

339

Phytoplankton abundance heterogeneity340

between cPFGs generates imbalanced AFCM341

datasets. The ratio between the most and342

the less represented class in our data initially343

ranged between 104 and 105. Thus, on the344

2D scatter plots used by cytometrists to345

identify the cPFGs, the less represented346

particles can be difficult to separate when347

their distribution overlaps other groups with348

higher abundances. Furthermore, dealing349

with large datasets require long periods of350

assiduity when running manual classification351

and visual control of groups boundaries,352

creating frequent errors as these steps are353

tedious.354

This can generate significant biases in the es-355

timated count of some classes. For instance,356

in the SSLAMM dataset, few dozen of Micro357

cells are typically observed in a sample,358

while dozen of thousands of Orgpicopro359

particles are present. Hence, misclassifying360

10 particles of Micro could result in a 30% 361

error rate while misclassifying 10 particles of 362

Orgpicopro would be negligible. 363

This issue is a type of statistical data con- 364

tamination and may have significant effects 365

on the patterns learnt by machine learning 366

algorithms. Without any estimation of this 367

contamination, it is impossible to disentangle 368

the errors coming from the data from the 369

error coming from the training process. 370

Furthermore, estimating the variability of 371

functional groups counts is essential to 372

be sure that results coming from different 373

studies are comparable. 374

375

The heterogeneity was estimated on classi- 376

fications performed by a panel of six AFCM 377

experts who were asked to classify SSLAMM 378

and SWINGS data coming from six and 379

twenty acquisitions respectively, acquired at 380

different seasons, geographical zones and 381

times of the day. The list of the cPFGs was 382

given, along with two acquisitions of 2.0 µm 383

polystyrene (Polyscience ®) and 3.13 µm sil- 384

ica beads (Bangs Laboratory ®). 385

The heterogeneity was measured by comput- 386

ing Adjusted Rand Indices (ARI) Steinley 387

(2004) and coefficients of variation (CVs). 388

The ARIs gave an indication about the sim- 389

ilarity between two experts overall classifi- 390

cations. The closest the ARI is to 1, the 391

more similar the classifications between two 392

experts are. The ARI have been computed 393

for all pairs of experts and for all files. 394

On the other hand, the coefficient of varia- 395

tion of each cPFG is computed as the stan- 396

dard error divided by the mean of the ex- 397

pert counts for that cPFG. The closest it is 398

to zero, the more the experts agreed on the 399

count of the given cPFG. To summarize, the 400

ARIs assessed the overall agreement between 401

experts’ classifications whereas the CVs gave 402

this piece of information at the cPFG level. 403

Consensual particles, defined as particles 404

for which 2/3 of the experts assigned the same 405
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label, were kept to train and evaluate the sta-406

tistical models.407

Beyond the initial training samples, one of408

the experts has manually gated three months409

of data from the SSLAMM station (from410

mid-September 2019 to mid-December 2019)411

and the entire data set from the MAP-IO-412

SWINGS cruise. The classification obtained413

from the CNN was then compared with the414

manual gating.415

Data presentation and process-416

ing417

The datasets composition were fixed to six418

phytoplankton functional groups determined419

by their flow cytometry optical properties420

as they represent the most common groups421

observed in marine samples . They were422

identified using the flow cytometry con-423

sensual nomenclature (http://vocab.nerc.424

ac.uk/collection/F02/current/): Redpi-425

copro, Orgpicopro, Redpicoeuk, Rednano,426

Orgnano, Redmicro, Orgmicro. There were427

however not enough Redmicro and Orgmicro428

cells in situ to distinguish between these two429

groups and they are treated together in the430

sequel under the name ”Micro” cells.431

In addition to these six phytoplankton432

functional groups, the datasets contained433

non-phytoplankton particles thereafter called434

noise particles or events. Noise events were435

heterogeneous and have been subdivided into436

< 1 µm and ≥ 1 µm groups using silica437

beads as a size reference (figure 5 in sup-438

plementary material). ≥ 1 µm noise mainly439

contained large detrital particles or predators440

such as ciliates or flagellates cells that have441

ingested some phytoplankton cells. Con-442

versely, < 1 µm noise often contained optical443

noise from the sensors, non-fluorescing het-444

erotrophic prokaryotes or decomposing cells.445

Due to the acquisition limitations of the446

two cytometers and because they present dim447

fluorescence in surface waters, the Redpico- 448

pro are hard to distinguish from < 1 µm noise 449

events and a curve shape criterion was used 450

to distinguish between them. Indeed, Red- 451

picropro cells are likely to be spherical cells, 452

and their SWS signal are expected to look as 453

bell curves, whereas < 1 µm noise events can 454

present a significant variety of shapes. There- 455

fore among the consensual Redpicopro cells, 456

only the bell-curved SWS cells were kept in 457

the training, validation and test sets of the 458

CNN. 459

In order to reach a substantial total dataset 460

size and to reduce the imbalance between 461

groups which disturbs the training process, 462

the over-represented groups were undersam- 463

pled in the training set. Even after under- 464

sampling, the relative number of Micro cells 465

in the SSLAMM data remained too low in 466

comparison to the other groups of the train- 467

ing set. Hence, three out of the six FLR25 468

files were artificially enriched with Micro par- 469

ticles from the FUMSECK campaign (DOI 470

10.17600/18001155) as if they were part of 471

the original dataset. These FUMSECK Mi- 472

cro cells were collected in the open Mediter- 473

ranean Sea using the same cytometer with 474

the same settings only four months before the 475

first SSLAMM data acquisition. These addi- 476

tional particles were given for classification 477

to the experts and only the cells identified as 478

Micro cells were kept. The potential batch 479

effect introduced is hence assumed to be neg- 480

ligible. 481

Before undersampling, the number of par- 482

ticles of the most represented group in the 483

training set was 45 times higher than the less 484

represented one. After undersampling, it was 485

only eight times higher at most for the two 486

datasets. 487

Conversely, the validation and test sets were 488

not rebalanced. The total size of the training, 489

validation, and test sets were of 33 791, 50 682 490

and 134 313 particles for the SSLAMM data, 491

and of 57 241, 365 863 and 224 426 particles 492
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for the SWINGS data. Table 3 in Supple-493

mentary Information describes the number of494

particles of each group in the training, vali-495

dation, and test sets.496

The length of each AFCM curve is closely497

linked to the size of the particle (the bigger498

the particle the longer the sequence). In or-499

der to train the CNN, which needs a fixed500

data format for all observations, the curves501

have been all set to a fixed length of 120502

values interpolated using quadratic interpola-503

tion (see Figure 2 in Supplementary Informa-504

tion for an illustration). A length of 120 has505

been chosen since it corresponds to the third506

quartile of the curves sizes distribution in our507

data and as intuitively less information is de-508

stroyed when small curves are interpolated to509

be bigger than the reverse. As the curves were510

not truncated and the profile shapes were pre-511

served, the choice of this length is not ex-512

pected to be of prime-importance regarding513

the performance of the model.514

Prediction pipeline presentation515

The core of the predictive pipeline is a Convo-516

lutional Neural Network initially designed for517

image recognition. The general idea of such518

a network is to learn a series of filters that519

detect some patterns in images and help to520

discriminate between the classes. More for-521

mally, these filters are tables of coefficients522

iteratively used to compute convolutional op-523

erations on the data going through the lay-524

ers. Compared to Dense layers, the Convo-525

lutional ones rely on the assumption that re-526

gions in the images convey useful information527

and that close pixels often carry redundant528

information. As a result, the total number529

of parameters of the model is reduced and530

the training of the model is kept tractable.531

The Convolutional layers automatically ex-532

tract features from the signal, which are then533

used by Dense layers at the end of the net-534

work to perform the classification itself.535

As both images and AFCM data can be rep- 536

resented as tables of coefficients, the same 537

Convolutional Neural Networks can be used 538

to treat both data types with minor adjust- 539

ments. 540

The CNNs can deal directly with the five 541

FCCs. On the contrary, cytometrists and the 542

machine learning models of the first family 543

of approaches presented above require to 544

compute features on this signal before per- 545

forming gating. Hence, we expected that the 546

CNN could take advantage of this raw and 547

more complete signal. The CNN architecture 548

is presented in Supplementary Information 549

(see figure 4). The architecture was inspired 550

by the VGG architecture (Simonyan and Zis- 551

serman 2014). Features are first extracted by 552

three blocks of convolutional layers separated 553

by ”local” average pooling layers in order 554

to reduce the redundant parts of the signal 555

and to automatically design features useful 556

for the classification. These convolutional 557

features are then pooled together using a 558

global average pooling layer so that they 559

can be treated by two dense layers. At the 560

end of the dense layers, a softmax activation 561

function is computing the probabilities that 562

an observation belongs to each class and the 563

loss of the model is computed. 564

565

The loss is measuring the gap existing 566

between the class probabilities outputted 567

by the model and the actual class of the 568

observation. This gap represents an error, 569

back-propagated to update the parameters 570

of the network accordingly. 571

The negative-likelihood also called the cate- 572

gorical cross-entropy is the most widely used 573

loss for single-label multivariate classification 574

(each observation belongs to one class only) 575

and is the one used here. More refined 576

versions of the categorical cross-entropy such 577

as the weighted version of the categorical 578

cross-entropy, the Focal Loss (FL) (Lin 579

et al. 2017), or the Focal Class-Balanced 580
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loss (FCBL) (Cui et al. 2019) have been581

implemented but brought no additional582

performances.583

Beyond the choice of the loss weights,584

the significant imbalanceness of the data585

were also dealt with using undersampling586

methods. Only a random subset (5000587

particles) of the most represented class was588

kept whereas most of the particles of the589

less represented classes were sampled. This590

enabled to reduce the gap between cPFGs in591

order to have both enough instances per class592

and a tractable total number of observations593

in the dataset. Yet, as Figure 2 highlights594

it, the density of points is not uniform in 2D595

cytograms. Pure random particles sampling596

tends to let some of the low density areas597

of 2D cytograms nearly empty, preventing598

machine learning models to learn which599

class to predict for particles in these areas.600

Hence, additional particles were sampled to601

fill low density areas. The impact of these602

zones on the confidence of the CNN cPFG603

predictions can for instance be seen on figure604

6 in Supplementary Information.605

606

Beyond the choice of the loss specification,607

another important choice is the one of the608

optimizer which deals with how the network609

parameters are updated with respect to the610

loss. We have benchmarked two optimizers:611

Adam and its extension Ranger. Ranger612

comes from the combination of two recent613

publications: RectifiedAdam (or Radam)614

(Liu et al. 2019) and Lookahead (Zhang615

et al. 2019).616

In order to avoid being stucked in bad617

local maxima, it is a common practice to618

slowly update the parameters of the models619

at the beginning of the training, when620

really promising parameters regions are not621

identified at the moment. This adaptation622

rate of the parameters with respect to the623

loss is called the learning rate of the model624

and is hence often chosen to be small in625

the early stages of the training process 626

(Popel and Bojar 2018). Radam adapts 627

the learning rate to avoid the learning rate 628

variance to grow too substantially, which is 629

often detrimental to the learning process, 630

according to the authors. On the other 631

hand, Lookahead enables the network to get 632

a better understanding of the loss topology. 633

In order to do so, two sets of weights are 634

used by Lookahead: a faster set of weights 635

that is frequently updated to “explore” the 636

loss surface and a slower set of weights (less 637

frequently updated) to ensure the stability 638

of the learning process. The faster set of 639

weights is updated using not all the data but 640

only a set of several observations batches 641

to get a raw idea of the promising regions 642

to explore. In the Ranger case, these fast 643

weights are updated thanks to the Radam 644

optimizer. It appeared that the Ranger 645

optimizer gave best results than Adam in 646

our case and was therefore preferred in our 647

experiments. 648

649

The loss, the behaviour of the optimizer 650

and more generally most parts of statistical 651

models are ruled by a set of hyper-parameters 652

chosen by the user. The number of possible 653

combinations is far too high for all the com- 654

binations to be tested and then to select the 655

best network specification. 656

One popular approach relies on Bayesian Hy- 657

peroptimisation algorithms (Bergstra et al. 658

2013), implemented in our case in the Python 659

library Hyperas (Hyperopt for Keras). The 660

idea of Hyperoptimisation methods is to con- 661

sider hyperparameters as statistical random 662

variables with a prior and to identify pos- 663

terior regions that present a low loss value. 664

Hence, some draws are taken from the prior 665

distributions, the model is evaluated and low 666

loss regions are identified and focused on. 667

It avoids spending very significant computa- 668

tional efforts on non-promising regions of the 669

hyper-parameters space as it is often the case 670
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using standard line search. The hyperparam-671

eters spaces used are given in section 1 in Sup-672

plementary Information.673

Comparison with other classifi-674

cation algorithms675

The CNN has been benchmarked against676

other supervised models in order to illustrate677

its performance. The benchmark models were678

models used in the literature mentioned ear-679

lier: the k-Nearest Neighbors (kNN) and the680

Linear Discriminant Analysis (LDA). Tree-681

based methods such as Random Forest were682

represented by LGBM which is more recent683

and takes advantage of gradient-boosting684

methods.685

The data from the inter-gating experiment686

were used for models evaluation. Once in-687

terpolated to a fixed length, the CNN was688

trained over the five FCCs per particle, while689

the benchmark models (which cannot deal690

with the raw curves) were trained on the691

hand-designed features computed on these692

FCCs. The list of the features used is given in693

section 2 of Supplementary Information. The694

data used to train the models have been ran-695

domly separated into a training, a validation696

and a test set. The models learn how to dis-697

tinguish between cPFGs on the training set.698

Once trained, the cPFGs of the validation set699

are predicted and the hyperparameter opti-700

misation procedure selects the best perform-701

ing specification of each model on that set.702

Finally, the best specification of all models703

are compared on the test set. The bench-704

mark models were trained on features com-705

puted over the raw FCCs. The choice of the706

features created from the signal highly influ-707

ence the performances of the models and has708

to be considered when presenting the results.709

We rely on the ten features per curve created710

by default by the CytoClus4© software. The711

feature list is given in Supplementary Infor-712

mation (see section 2). 713

The performances of the CNN and of the 714

benchmark models were evaluated using the 715

standard per-class precision and recall met- 716

rics. The precision is the proportion of parti- 717

cles actually belonging to class k among all 718

those identified as belonging to class k by 719

the algorithm. The recall is the proportion 720

of particles effectively belonging to class k 721

among all the particles of class k existing in 722

the dataset. The closer are both precision and 723

recall to 100%, the closer the classification of 724

a model is to the “true” labels. 725

The Python code used to produce the re- 726

sults of this work is available as a Github 727

repository named phyto curves reco. 728

Results 729

Manual gating uncertainty esti- 730

mation 731

The main groups observed by AFCM are 732

represented on Figure 2. It presents descrip- 733

tive 2D cytograms associated with two files 734

for each data source. The 2D cytograms are 735

the main tools used for manual gating and 736

evidence here the disparities existing between 737

experts. The non-consensual particles - on 738

which less than 2/3 of the experts agreed - 739

were located mainly at the frontiers between 740

groups. The less consensual demarcation 741

lines were between Rednano and Redpicoeuk 742

and between Redpicopro and the background 743

noise events. 744

745

The uncertainties of manual classification 746

for individual cPFGs are reported in Supple- 747

mentary Information (Figure 1 and 2). The 748

patterns observed in terms of ARIs and CVs 749

were similar between SSLAMM and SWINGS 750

data. For both data sources, 75% of the 751

pairwise ARIs were higher than 0.78, which 752

underlined that the experts shared a com- 753
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(a) SSLAMM FLR6 2019-10-05 09h59 (b) SSLAMM FLR25 2020-02-19 06h07

(c) SWINGS FLR5 2021-03-02 18h11 (d) SWINGS FLR20 2021-01-30 03h59

Figure 2: 2D cytograms showing the particles contained in two files from the SSLAMM data
(a and b) and two files from the SWINGS data (c and d). Cytograms (a) and (c) present the
Total Red Fluorescence (a.u., Total FLR) as a function of the Total Forward Scatter (a.u.,
Total FWS) and cytograms (b) and (d) show the Total Orange/Yellow Fluorescence (a.u.,
Total FLO, Total FLY) as a function of the Total Red Fluorescence (a.u., Total FLR). Total
refers to the area under the curve of the optical variable. Each dot represents a particle. A
particle is considered as consensual if 2/3 of the experts have voted for the same cPFG for
this particle. Non-consensual particles are represented in black.
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mon way to perform the overall classifica-754

tion. However, these high ARI were driven by755

several over-represented cPFGs which were756

also well identified. This was the case of757

Orgpicopro cells that obtained CVs between758

0.01 and 0.14 for the SSLAMM data and be-759

tween 0.04 and 0.50 for the SWINGS data760

and the case of Redpicoeuk (SSLAMM CV ∈761

[0.05, 0.50] and SWINGS CV ∈ [0.10, 0.45]).762

Conversely, Micro cells (SSLAMM CV ∈763

[0.26, 1.60] and SWINGS CV ∈ [0.20, 1.30]),764

Orgnano (SSLAMM CV ∈ [0.48, 0.90] and765

SWINGS CV ∈ [0.30, 1.70]), Rednano (SS-766

LAMM CV ∈ [0.48, 0.90] on and SWINGS767

CV ∈ [0.30, 1.70] ), and Redpicopro (SS-768

LAM CV ∈ [0.16, 2.50] and SWINGS CV ∈769

[0.5, 1.20] ) were far less identified.770

Model benchmark on SSLAMM771

data772

Tables 1 and 2 report the precision and the773

recall obtained by the four models for each774

data class.775

776

Based on the specific precision and recall777

values, the CNN and the LGBM obtained778

the best performances on the quasi-totality779

of cPFGs. The performance spread between780

the two methods was often inferior to 1%.781

The kNN presented the worst performances782

for both datasets. The LDA results are more783

mixed as it well distinguished noise events784

from phytoplankton particles classified but785

got for instance the worst precision on three786

cPFGs on the SWINGS data.787

788

The cPFGs that were the best identified789

manually were also the ones that were the790

best classified by machine learning models.791

This is the case of Orgpicopro, Redpicoeuk792

particles. Similarly, the Redpicropro and793

Orgnano cells were weakly identified man-794

ually and were less well gated by machine795

learning models. On the contrary, Micro and 796

Rednano cells which experienced poor man- 797

ual identifiability presented good precisions 798

and recalls for near all methods. 799

800

The generalization power of the models 801

was also tested by training them on one 802

data source (SSLAMM or SWINGS) and 803

by making predictions on the other data 804

source. Results are given in Tables 4 and 5 805

in Supplementary Information. 806

When the models were trained on the 807

SWINGS data, the CNN obtained the best 808

performances, with precisions higher than 809

90% for five out of the eight classes and kNN 810

the worst performances. Concerning the 811

cPFGs, noise events and Orgpicopro were 812

the best classified and Redpicopro and Micro 813

cells were the less well gated. 814

When trained on the SSLAMM data and 815

predict on SWINGS data, the LGBM ob- 816

tains the best performances and LDA the 817

worst. Redpicopro cells and noise events 818

≥ 1µm were the worst identified by the 819

models. Rednano cells obtained precisions 820

lower than 34% but recalls higher than 87%. 821

The opposite pattern was observed for the 822

Redpicoeuk class, denoting that a significant 823

number of manually identified Redpicoeuk 824

cells were predicted as Rednano cells by the 825

models. 826

827

The running time of the models is given in 828

Supplementary Information. 829

Prediction of the SSLAMM 830

Time Series 831

Figure 3 presents the automatically and man- 832

ually classified time series for all cPFGs 833

counted particles from the SSLAMM files and 834

the SWINGS files. As accurate cPFG pre- 835

dictions imply accurate predictions of the to- 836

tal noise events, the background noise events- 837
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Model kNN
(prec)

LDA
(prec)

lgbm
(prec)

cnn
(prec)

kNN
(rec)

LDA
(rec)

lgbm
(rec)

cnn
(rec)

Micro 73.68 96.54 97.13 98.00 72.20 93.95 98.65 98.88
Orgnano 27.80 50.30 89.74 96.59 35.43 94.86 100.00 97.14
Orgpicopro 97.41 98.74 99.91 99.84 76.36 98.97 99.35 99.31
Rednano 79.00 94.18 98.04 97.33 90.78 85.58 99.32 99.08
Redpicoeuk 71.45 83.80 99.02 99.32 83.26 99.45 98.33 97.60
Redpicopro 4.67 28.72 73.73 79.51 54.08 96.65 98.62 95.34
Noise < 1µm 91.95 99.41 99.97 99.67 85.66 96.11 99.47 99.50
Noise ≥ 1µm 91.06 97.59 97.23 96.22 71.17 78.38 98.22 97.39

Table 1: Precision (prec) and recall (rec) of the benchmarked models on SSLAMM data

Model kNN
(prec)

LDA
(prec)

lgbm
(prec)

cnn
(prec)

kNN
(rec)

LDA
(rec)

lgbm
(rec)

cnn
(rec)

Micro 24.20 67.66 95.22 75.26 93.15 93.61 100.00 100.00
Orgnano 10.74 31.68 86.18 96.30 45.38 80.67 89.08 65.55
Orgpicopro 67.93 48.54 99.58 99.24 49.04 90.78 99.30 99.16
Rednano 62.02 83.02 75.56 85.04 82.82 92.58 99.05 96.08
Redpicoeuk 97.19 97.11 99.77 99.65 79.99 91.74 96.93 98.23
Redpicopro 12.04 34.13 98.24 94.53 53.75 65.70 95.88 95.80
Noise < 1µm 87.01 97.11 99.63 99.59 75.32 83.60 99.79 99.38
Noise ≥ 1µm 53.55 98.88 93.65 92.02 77.75 61.04 98.10 97.26

Table 2: Precision (prec) and recall (rec) of the benchmarked models on SWINGS data
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related curves are not reported for concision838

purposes. The R2 for the noise particles was839

of 1.0 for both data sources (data not shown).840

The CNN and the manual expert hence dis-841

criminated similarly between phytoplankton842

and non-phytoplankton cells (the counts only843

differed by 2.5%).844

The R2 and the slope coefficients on Fig-845

ure 3 are close to 1.0 for the quasi-totality of846

the cFPGs of both data sources. The counts847

resulting from the manual and CNN gatings848

are in adequation. The two main exceptions849

are the Micro and Rednano cells from the SS-850

LAMM data. In the SSLAMM data, Micro851

cells were rare (less than 300 cells per file)852

which made the identification of this popula-853

tion difficult. Concerning the Rednano cells,854

the R2 of 0.61 is partly explained by a differ-855

ent Redpicoeuk / Rednano frontier between856

the CNN and the expert. This is confirmed857

by the 0.84 slope coefficients of the SSLAMM858

Redpicoeuk cells: the largest manually gated859

Redpicoeuk cells were regarded as Rednano860

cells by the CNN.861

The CNN average prediction time for each862

file of the series was of 90 seconds (7 sec-863

onds for the prediction itself and more than a864

minute for the pre-processing steps). We ran865

the pipeline on two machines in parallel and866

the total prediction time was of 15 CPU us-867

age hours for the 1639 files of the SSLAMM868

time series and 10 hours for the 1184 files of869

the SWINGS time series.870

Discussion871

The use of automated systems is often872

mandatory to get resolutive datasets, com-873

mon in the field of physical oceanography, but874

still limited in marine microbial ecology. Mi-875

crobiological entities in marine environments876

are influenced by physics, chemistry, and bio-877

logical interactions that shape their distribu-878

tion. Yet, they also have internal clocks and879

specific physiological-morphological charac- 880

teristics that affect their fitness and require 881

studies integrating biodiversity and dynamic 882

processes (Dutkiewicz et al. 2020). The mea- 883

surements of cell abundances and morpho- 884

logical traits extracted from in situ samples 885

collected with AFCM have already provided 886

numerous insights into the complex distribu- 887

tion of phytoplankton and its interaction with 888

environmental factors (Ribalet et al. 2015; 889

Hyun et al. 2020), such as physical conditions 890

(Partensky et al. 1999; Vaulot et al. 2008; 891

Marrec et al. 2018; Louchart et al. 2020) and 892

trophic network interactions (Christaki et al. 893

2011). 894

Automatic classification of AFCM data is 895

built upon referenced cPFGs used for train- 896

ing purpose. Manual gating is prone to sub- 897

jectivity and assessments of the heterogene- 898

ity between experts classifications are rarely 899

performed in flow cytometric studies. Garcia 900

et al. (2014) evidenced up to 20% variability 901

between two experts on two groups of bacteri- 902

oplankton. In the present study, a consensus 903

between six experts from different laborato- 904

ries was evaluated on six cPFGs and noise 905

events. The most abundant cPFGs, Orgpi- 906

copro and Redpicoeuk, were identified by all 907

experts with small error margins. This can 908

be attributed to the high number of cells, 909

combined to the very characteristic orange 910

fluorescence of Orgpicopro particles. On the 911

contrary, there was a lack of consensus con- 912

cerning the boundaries between Redpicoeuk 913

and Rednano, with counts variations of more 914

than 100% between experts. The origin of 915

this discrepancy came from the non consen- 916

sual criteria used to differentiate these groups 917

using 2D projections. Some experts used the 918

3.13 µm silica beads provided to them for 919

the experiment, while other experts used a 920

threshold between the 2 and 3.13 µm beads. 921

The choice of a criterion to distinguish Red- 922

picoeuk from Rednano is an issue already re- 923

ported in Buitenhuis et al. (2012). In ad- 924
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Figure 3: Automatic classification count (number of particles) as a function of the manual
gating count (number of particles) for each cPFG: the Orgnano (a), the Micro (b), the
Rednano (c), the Redpicpeuk (d), the Redpicopro (e), the Orgpicopro (f). For each cPFG a
linear regression has been fitted and the resulting line coefficients and the R2 coefficient are
given.
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dition, the Redpicopro / noise < 1µm fron-925

tier differed significantly between experts. Fi-926

nally, the differences in cPFG relative abun-927

dances made the manual classification of rare928

cPFGs hard and entailed divergences in Mi-929

cro, Rednano and Orgnano counts.930

As such, the intercomparison highlighted the931

necessity of consensual rules and criteria to932

distinguish groups and the need for peer-933

reviewed data in order to obtain reliable934

cPFG observations for automation purposes.935

Such multi-reviewed datasets are increas-936

ing in popularity in the machine learning937

community, the best example being the938

ImageNet repository (Fei-Fei 2010).939

940

Despite the heterogeneity in manual gat-941

ing, a robust and reliable dataset has been942

built by keeping the particles that were con-943

sensual between experts. Using the con-944

sensual observations, three statistical mod-945

els were trained and their performances com-946

pared with the ones of the Convolutional947

Neural Network presented here.948

On the SSLAMM and SWINGS test sets,949

the CNN model proposed in this study950

achieved precision and recall values competi-951

tive with the ones of the LGBM and higher952

than the ones of the kNN and of the LDA. It953

exhibited performances higher than 90% in954

a vast majority of cases. When compared to955

a manual expert gating the CNN has given956

proofs that it was a reliable method to track957

the cPFG abundance in near-real time in two958

very different contexts. Furthermore, it ex-959

hibited significant generalization properties960

when trained on the SWINGS dataset and961

used for prediction on the SSLAMM dataset.962

When trained on the SSLAMM data to963

predict SWINGS data, the generalization964

power of the CNN was still solid but lower.965

This may be due to the lower diversity966

of SSLAMM data that were sampled in a967

unique geographical point compared to the968

SWINGS data collected in very contrasted969

areas of the South-West Indian and Southern 970

oceans. This could also be due to the lower 971

size of the SSLAMM dataset to which neural 972

methods are particularly sensitive. 973

974

As a conclusion, this preliminary and 975

highly promising work applies a CNN on in- 976

terpolated raw pulse shapes acquired on an 977

hourly basis by pulse-shape recording flow 978

cytometry. It opens the way to the integra- 979

tion of cPFGs into forecasting biogeochemi- 980

cal models, depending on near real time data 981

inputs. High frequency sampling of phyto- 982

plankton and determination of the commu- 983

nities structure and abundances in near real 984

time will permit a better integration of pulsed 985

events and responses capacities of some func- 986

tional groups in these models. It will also en- 987

able to adjust near real time spatial sampling 988

strategies where influences of physical struc- 989

tures such as fronts and eddies directly af- 990

fect the distribution of phytoplankton groups 991

(d’Ovidio et al. 2019). 992
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