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Abstract

Flow Cytometry has enabled to collect very significant phytoplankton datasets in quasi-real
time. However, these data have then to be post-processed in order to count the number of cells
belonging to each phytoplankton species or group of species sharing common characteristics, called
phytoplankton functional groups (PFT). This manual post-processing is very time-consuming and
may be a source of classification errors for which we provide here an estimation.
As a result, there were many recent propositions to make this classification automatic based
on Machine Learning methods. However, most of these methods presents either a long training
process, are unable to predict the class of very small cells or need to manually design some features.
Our method is based on recent advances in Deep Convolutional Neural Networks and classify the
phytoplankton functional groups thanks to cytometric curves provided by a flow cytometer. We
show on a novel long and high frequency time series that our model presents a high accuracy that
that seems not affected by infra-day cells cycles. It also exhibits a significant per class precision
despite of the extreme imbalanced nature of the data. Finally, the model seems also to be able
to reuse features learnt on some particles to predict the class of particles coming from another
location. Thus, it might be redeployed in other geographic contexts with minor adjustments.
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1 Introduction

The datasets in Oceanography are conspicuous for
being large (with a high number of observations)
and of high dimension (comprising a substantial
number of variables). This makes oceanography
a very suited field for statistical analysis. This
is particularly the case of phytoplankton-related
data. Phytoplankton, under a unique denomina-
tion, actually contains several thousand species.
Some of these species share common characteris-
tics such as for instance the size or the division
time which makes it possible to design groups
of species called phytoplankton functional groups
(PFTs).

The study of the PFTs is of primary impor-
tance given that the contribution of phytoplank-
ton to primary production, the amount of un-
derwater dissolved CO2 absorbed by phytoplank-
ton cells per unit of time, is equivalent to all of
the primary terrestrial production. This is the
case even if phytoplankton cells represents less
than 1% of the terrestrial autotrophic biomass
[7]. This means that phytoplankton has a very
rapid growth capacity (it can divide several times
a day) and therefore highlights the need for high
frequency observations to encompass the morpho-
logic diversity of those cells and assess correctly
the classification power of statistical models.

The development of flow cytometry has made
possible a vast automated data acquisition on
PFTs given that a cytometer can process up to
10,000 cells per second. From each cell in the
sample, the cytometer is able to generate a set of
curves which represents the optical profile of each
cell. After reprocessing, the oceanographers man-
ually determine the different functional groups
existing in the data. These operations are how-
ever very time-consuming and their automation
seems today necessary.

Automating classification tasks using statis-
tical methods, i.e. designing a method to auto-
matically assign a label to an observation based
on its features, has received special interest in
oceanography for 20 years. Classification tasks
were actually often referred as ”clustering” tasks
in the Ocenographic literature [add source], which
can be confusing with regards to the actual mean-
ing of ”clustering” in statistics. In the following,
we will use the term classification which is more

in line with the statistical literature.

Concerning phytoplankton classification, most
of the effort seems to have been spent on image
processing and computer vision. One can for ex-
ample cite the count of coccoliths using shallow
neural networks in the seminal work by Beaufort
and Dollfus (2004) [3] or more recently the works
by Dunker & al. (2019) [5] or by González &
al. (2019) [8] based on Residual Neural Networks
and Transfer Learning [16] [check if Dunker is
residual and transfer]. Automated recognition of
groups of individuals from the curves from flow
cytometry was less explored with some notable
exceptions such as Malkassian (2011) [13] which
classifies the species of phytoplankton by plunging
these curves into a Fourier basis and calculating
distances between them. Other works using Flow
Cytometry data but not on phytoplankton cells
also exist as in del Barrio and al. (2019) [1] where
they create curves templates and classify the ob-
servations curves with respect to these templates
using Wasserstein distance and optimal transport.

[Literature review too small ?]

Contrary to these works, we aim to automate
the cells count of functional groups and not of the
species, which might be more challenging as the
morphological diversity among a set of species is
at least superior to the morphological diversity
among each species. The raw data used for this
classification are the cytometric curves of each cell
going through the cytometer. Compared to phy-
toplankton images, the size on disk of the 5 curves
per particle is approximately the same : 4.5kb
per observation. However, classifying and then
count the cells using cytometric curves presents
a real advantage because it can deal with parti-
cles smaller than 20 microns. On the contrary,
the image resolution is not sufficient to obtain
proper images of such small particles. This is a
real issue considering that the very vast majority
of phytoplankton particles in the in-situ samples
are smaller than this threshold. The second main
advantage is the shorter training process because
of the absence of transfer learning procedure [14],
contrary to the images that require to fine-tune
very heavy networks such as Residual Networks
[9].
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In this work we use recent advances in now
standard Deep Convolutional Neural Networks
[10] to automate PFTs classification. This is a
challenging task because of the morphological di-
versity evoked earlier, to the format of raw data
and to the dramatically imbalanced nature of
datasets. These aspects also make manual clas-
sification challenging for oceanographers. Hence,
we begin this article with an assessment of the
error range coming from manual data classifica-
tion (as those data are then considered as ground
truth to train our model).

The first section thus presents an estimation
of the manual clustering error that have been per-
formed during a small experiment. We pursue by
presenting the model specification and the data.
Section 4 shows the performance of the model on
three use cases. First, our model is compared
with other benchmark models on a dataset made
of several acquisitions from the FUMSECK data
campaign. Then, the model is used on the new
high-frequency long time series coming from the
Endoume marine station (SSLAMM) located in
Marseille in order to check that the predictions
are not affected by seasonality nor infra-day cell
cycles. Finally, we give insights about the robust-
ness of our model by using the features learnt on
a dataset and predicting observations from a dif-
ferent data source. Section 5 closes this work by
analysis the limits of our work and giving axes for
future research.

2 Manual clustering estima-
tion

[THIS EXPERIMENT HAVE NOT BEEN PER-
FORMED YET, THE TEXT WILL CHANGE
ACCORDINGLY]
In this section, we aim to assess the range of error
commonly made while performing a manual clus-
tering. The samples treated by the cytometer are
very imbalanced between PFTs, the ratio between
the most and less represented class being between
104 and 105. Hence, the less represented particles
can be ”hidden” by the most represented ones
on the 2D scatter plots used by cytometrists to
identify the PFTs as the one presented in Figure
1 [have to be more precise on how cytometrists
make classification ?]. This can create very sig-

nificant biases in the estimated count of these
classes. For instance, in the data there are typi-
cally at most a few dozen of microphytoplancton
particles while there are dozen of thousands of
synechoccocus particles. Hence, misclassifying 10
particles of microphytoplancton could result in a
30% error rate while misclassifying 10 particles of
synechoccocus would be negligible.

This issue is a type of statistical data-
contamination and can have significant effects
on the patterns learnt by the network. Without
any estimation of this contamination, it is im-
possible to disentangle the errors coming from
the data from the error coming from the training
process. We could not find an estimation of this
phenomenon and conducted a small study to give
a raw assessment of the inter-individual manual
classification errors.

In our experiment, we have asked five re-
searchers to classify data coming from three sam-
ples sampled at different seasons and time of the
day. They were given a list of the PFTs groups
existing in those samples and an approximate
repartition of the different groups in the data.
Once they have performed the clustering, it is
possible to measure the standard errors in the
count of each functional group. The results are
presented in Figure 2. Hence the closer to zero
the standard error is, the more the classification
is the same for all researchers.

PFT Airbubbles Cryptophytes Microphytoplankton

Mean count

Standard Error

PFT Nanoeukaryotes Noise Picoeukaryotes

Mean count

Standard Error

PFT Prochlorococcus Synechococcus

Mean count

Standard Error

3 Model and data description

In this section we detail the nature of the data,
their pre-treatment and the specification of our
network.
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3.1 Data presentation

The general principle of the flow cytometer is
as follows: a sample of water to be analyzed is
pumped in the cytometer from the environment
studied. The cytometer aligns the cells in sus-
pension in the sample one by one thanks to the
generation of a laminar net that generates an hy-
drodynamic focus and makes them pass in front
of a laser beam. This method allows each cell or
particle to pass in front of a coherent laser beam.
The interception of this beam by the particles
generates a set of optical profiles of diffusion and
natural fluorescence when pigments are present.
These optical profiles take the form of a set of
curves. The frequency of acquisition of curves of
the cytometer is 4 MHz which gives it a collection
capacity of barely 10,000 cells per second. The
datasets generated are therefore rapidly massive.

In our case the cytometer issues five curves:
the curvature curve, the red (FLR) and orange flu-
orescence (FLO) curves and the forward (FWS)
and Sideward scatter (SWS) (other cytometers
might have a different number of curves) [have
to give details about the curves ?]. Because of
the high proportion of noise particles, a common
practice is to perform two types of data acquisi-
tions using two Red Fluorescence (FLR) thresh-
olds: a low one here denoted FLR6 and a high
one denoted FLR25. The lower threshold enables
to count the particles that have the smallest to-
tal red fluorescence (which are also the smaller
particles). The FLR25 enables to clear out the
small particles in order to better count the biggest
ones. Then the total count by class is simply the
count of low fluorescent particles in the FLR6 file
and of high fluorescent particles in the FLR25 file.

Hence, each observation is made of five curves
which length is closely linked to the size of the
particle (the bigger the particle the longer the
sequence). In order for all sequences to be com-
parable, the curves have been interpolated using
quadratic interpolation. Using truncated and
padded with zeros sequences as in Natural Lan-
guage Processing (NLP) has also been imple-
mented and led to poorer performance.

We have chosen a fixed length of 120 values for
each curve of all observations that corresponded
approximately to the third quartile of the distri-

bution of particles curves lengths. The influence
of this length choice on performance has not how-
ever been tested and could be in further research.
Once the curves resized, one obtains for each ob-
servation five curves of length 120 or alternatively
a 5 × 120 matrix which a representation is given
in Appendix 2.

Concerning the origin of the data, two main
sources of data have been used in this work: The
FUMSECK Campaign data and the Endoume
Marine Station (SSLAMM) data.
The FUMSECK campaign was a cruise that took
place from April, 30, 2019 to May, 05, 2019 off the
Ligurian Sea. [add small description]. During this
campaign, 610 cytometer samples have collected
representing barely ... particles.

The SSLAMM time series has started in
September 2019 at the Endoume Marine Sta-
tion in Marseille. Some sea water is continuously
pumped at 10 meters from the coast and delivered
into the laboratory buildings where analyses are
conducted. A cytometer is making acquisitions
into this water flow every two hours, hence gener-
ating 12 FLR6 and 12 FLR25 files per day. Such
an infrastructure has no equivalent in Europe and
to our knowledge in the World [is it true ?]. Hav-
ing data at such a high frequency over a period
of several years could enable to answer very fine
research questions that were until now impossible
to investigate due to the lack of data. Cruises are
often limited by weather conditions, being can-
celled in case of extreme conditions. As the data
acquisition process is not independent of the value
taken by the quantity of interest (the multivariate
distribution of the groups), this could result in sig-
nificant biases in effects estimations. Moreover,
the behavior of the phytoplankton cells during
these extreme events is not fully understood, let-
ting room for future research on these data.

In both cases, the same functional groups
nomenclature have been used. It is composed
of six phytoplankton classes: Prochlorococcus,
Synechococcus, Picoeukaryotes, Nanoeukaryotes,
Cryptophytes and Microphytoplankton. Two ad-
ditional classes have been added: noise particles
and airbbubles. Noise particles are actually very
heterogeneous: detritic particles stricto sensu,
phytoplankton predators that present a fluores-
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cence, phytoplankton cells in decomposition...
etc. The airbubbles begin to appear in the cy-
tometer when some manual interventions have to
be performed. It is then more a class helpful for
machine monitoring rather than for purely scien-
tific purposis.

3.2 Prediction pipeline presenta-
tion

Convolutional networks have known a very fast
development in image recognition and computer
vision during the last ten years starting with the
seminal works of Krizhevsky and al. (2012). [10].
The general idea of such a network is to learn a
series of filters that detect some patterns in im-
ages and help to discriminate between the classes.
More formally, these filters are tables of coeffi-
cients used to compute convolutional operations
on the data output by the last layer. Compared to
Dense layers the convolutional ones relies on the
assumption that regions in the images conveys
useful information and that close pixels often
carry very redundant information. As a result,
the total number of parameters of the model is
reduced and the training of the model is kept
tractable even for big three color channels (Red,
Green, Blue) images. Once the features extracted
by the convolutional networks, one can use Dense
layers at the end of the network to perform the
classification itself, which is what is conducted
here.

A l×L color image is represented by l×L co-
efficients for each of the three RGB color channel
i.e. l×L×3 integer coefficients ranging from 0 to
255. In the case of black and white images it is a
l× L× 1 or l× L table. In our case, our network
is not applied to images but to 5 × 120 matrices
of float coefficients which are formally speaking
similar to black and white images. Hence, the
same networks as for images can be used with
minor modifications.

An alternative option rather than using the
five stacked raw curves is to generate the images
of each curve and to use these 5 images per obser-
vation as input. The two possible representations
(matrix or curve) are again given in Appendix 2.
Yet, taking the curves images actually dilutes the

signal held by the curves among a very substantial
number of white pixels. The signal was then too
hard to perceive for the network and resulted in
network training failures.

Thus, we decided to keep the matrix repre-
sentation that is the raw signal itself (up to a
quadratic interpolation) rather than manually de-
signed features. We expect this very rich signal
to be highly efficient for classification purposes
as information used by oceanographers is much
more simplified and enable the manual classi-
fication. The model architecture is presented
modelspe. Features are first extracted by three
convolutional layers. Then, local averages of the
coefficients are taken by a Global Average Pool-
ing layer relying on the same idea that a part
of the signal is redundant if taken at a too fine
level. These ”averaged features” are then treated
by a series of dense layers. The dropout layers
enable not to train every neuron of the layer. It
avoids the network to become too specialize over
a dataset, which is known as ”model overfitting”
in Machine Learning.
At the end of the dense layers a softmax layer is
computing the probabilities that an observation
belongs to each class and the loss of the model is
computed.

The loss is measuring the gap existing between
the class probabilities that the model outputs and
the actual class of the observation. This gap rep-
resents an error that is then back-propagated to
update the parameters of the network accordingly.
The loss is a key component of the model and is
the main way we have decided to treat the fact
that the data were very imbalanced. We have also
randomly sampled some observations of very rep-
resented classes to fasten the training time of the
model. The use of more advanced under-sampling
techniques such as Edited Nearest Neighbors or
Tomek’s links [2] is not straightforward due to
the very particular functional form of the data.
Projecting the data into simpler spaces and per-
forming under-sampling methods in those spaces
have given not better results and is not used in
our final model training workflow.

The canonical loss for single-label multivariate
classification is the negative log-likelihood or cat-
egorical cross-entropy (negLL). Its expression is
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given by :

negLL = −
K∑
k=1

n∑
i=1

(yi,k ∗ log(ŷi,k))

with i ∈ [1, n] the observation index, k ∈ [1,K]
the class index, yi,k equals 1 if observation i is in
class k and ŷi,k the probability that observation i
is in class k predicted by the model.

This loss gives the same weights to all errors
whatever the classes of the observations. Three
refinements have been implemented in this sense
here: weighted categorical loss entropy, focal loss
[11] and class-balanced loss [4] in order to achieve
a good overall accuracy but also a good per-class
accuracy.
The weighted negLL (WnegLL) is a straight-
forward extension of the negLL where the loss
incurred when badly predicting some classes is
higher than badly predicting others. In our
case, the less represented classes have been over-
weighted. However, this approach is very sensitive
to the way the weights are computed [add source].
The most common practice is to set those weights
to 1

nk
or to 1√

nk
, with nk the number of obser-

vations of class k. Intuitively as our data are
extremely imbalanced, using 1

n might lead to too
small weights for the most represented data and
we expect the second one to perform better. Ad-
ditionally, according to common statistical stan-
dards, one should use different data for training,
validating and testing the model. Tuning those
weights have then to be performed on another
dataset and not reuse those data for other pur-
poses. [TO REWRITE].

Over-weighting very unrepresented data
hinges on the hypothesis that rare classes are
difficult to predict. This claim can be justified
by the fact that bigger particles tend to present
a wider range of morphological diversity and that
they are also the least represented PFTs. How-
ever, in order not to rely on this hypothesis nor
on the parametric form of the weights formula we
have used the newly introduced focal loss (FL)
its generalization, the Focal Class-Balanced loss
(FCBL), which have the following expressions:
[check formulations] [change ŷ for pi,k]

FL = −
K∑
k=1

αk

n∑
i=1

yi,k(1− ŷi,k)γ log(ŷi,k)

and

FCBL = −
K∑
k=1

1− β
1− βnk

n∑
i=1

yi,k(1−ŷi,k)γ log(ŷi,k)

α is a class-dependent weight in the same
spirit as the WnegLL weights. γ is a focusing pa-
rameter, it defines how little the contribution of
easy-to-predict observations is. β controls how the
re-weighting depends on class frequency: β = 0
corresponds to negLL and β = 1 correspond to
WnegLL with the weights equals to 1

nk
are three

hyper-parameters, nk is the number of observa-
tions of class k.

From the expressions below, it appears that
the focal loss decreases the contribution of easy
well-classified observations, i.e. with ŷi,k close to
one, through the training thanks to the ”mod-
ulating” factor (1 − ŷi,k)γ but also with some
weights α as in WnegLL. The FBCL automates
in some way the choice of α, but also relies on a
new parameter β. We are implementing the three
losses, give the hyper-parameters value chosen in
Appendix D and compare the performances ob-
tained in the next section.

[Add the fact that there is no need for really
balanced datasets]

Beyond the choice of the loss, an important
choice is the one of the optimizer which deals
with how the parameters of the network are up-
dated with respect to the loss. We have here
benchmarked two optimizers: Adam and its ex-
tensions Ranger. Ranger is the combination of
two very recent publications: RectifiedAdam [12]
and Lookahead [17]. In order not to be stuck
in bad local maxima, it is a common practice to
slowly update the parameters of the models at the
beginning of the training, where really promising
parameters regions are not for the moment identi-
fied. This adaptation rate of the parameters with
respect to the loss is called the learning rate of the
model and is hence often chosen to be small in the
early stages of the training process [15]. Radam
adapts the learning rate to avoid the learning rate
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variance to grow too substantially, which accord-
ing to the authors is often very detrimental to the
learning process. On the other hand, Lookahead
enables the network to get a better understanding
of the loss topology. In order to do so, two sets of
weights are designed by Lookahead: a faster set
of weights that are often updated to ”explore” the
loss surface and a slower set of weights to ensure
the stability of the learning process. The faster
set of weights is updated using not all the data
but only a set of several observations batches to
get a raw idea of promising regions to explore.
In the ranger case those fast weights are updated
thanks to the Radam optimizer.

As for the losses and most of the parts of the
neural networks, the behaviour of the optimizers
are also ruled by a set of hyperparameters that
need to be chosen by the user. The number of
possible combinations is far too high for all the
combinations to be tried and then pick the best
network specification.
One popular approach relies on Bayesian Hyper-
optimisation algorithms [add source] which are
implemented in our case in the Python library Hy-
peras (Hyperopt for Keras). The idea of Hyper-
optimisation methods is to consider hyperparam-
eters as statistical random variables with a prior
and to identify posterior regions that presents a
low loss value. Hence, some draws are taken from
the prior distributions, the model is evaluated
and low loss regions are identified and focused
on. It avoids to spend very significant compu-
tational efforts on non-promising regions of the
hyper-parameters space as it is often the case us-
ing standard line search.

[end of this part to rewrite:] After model pre-
dictions a post-processing is performed. All the
particles presenting low predicted probabilities
are given the noise label rather than the label of
the highest probability class. This is due to the
fact that the noise particles are defined by the
fact that they are not phytoplankton cells rather
than as being a biologically consistent class. Con-
ceptually by creating this noise class, we are here
making a two stages procedure in a single step.
The first stage would be to predict if the parti-
cle is a phytoplankton cell or not. If it is, then
a second step would be performed to determine
its class. [give more details]. Doing this post-

processing enables to account for the first step of
this procedure.

In the following, the data were split in three
parts: the training the set, the validation and the
test set. The model was trained on the training
set, the choice of the parameters done according
to the performance of the validation sets and the
final choice between the losses performed on the
test set.

4 Results on in-situ data

This section presents three cases of applications of
our model. First, the model is benchmarked again
other models on the FUMSECK campaign data
in order to illustrate its predictive power. Then,
predictions are made upon samples acquired at
the Endoume marine station in order to show
the invariance of our network to seasonality and
infra-day shape changes of the cells. Finally, the
model is trained on FUMSECK data to predict
Endoume samples to illustrate its generalisation
power.

4.1 Model benchmark on FUM-
SECK data

In this section, we train the our model over
44.500 observations and benchmark it against
other supervised models in order to illustrate
its performances. The algorithms compared are
Light GBM (LGBM), Feed Forward Neural Net-
work (FFNN), the k-Nearest Neighbors (kNN)
and Support Vector Machines (SVM). LGBM has
been chosen because it is in practice very used by
Machine Learning practitioners in several fields of
application and has won several Kaggle challenges
(as it was the case of Random Forests models ear-
lier on). The last three models have been picked
as they were the one implemented in the Rclus-
Tool package [add source], which is a package
implementing Machine methods applied to flow
cytometry data.

However, these models could not process the
raw signal as it is the case in our model and there
is a need to manually compute some features.
The presented results have then to be considered
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by keeping in mind that the choice of the fea-
tures created from the signal highly influence the
performances of the models. We rely on the 70
features [number to precise] created by default by
the CytoClus c©software as they are widely used
by oceanographers. The feature list is given in
Appendix E.

The metrics reported for each class and each
algorithm are the precision and the recall. The
precision is the proportion of particles actually
belonging to class k among all those identified as
belonging to class k by the algorithm. The recall
is the proportion of particles effectively belonging
to class i among all the particles of class k existing
in the dataset.
There is a precision / recall arbitration and ob-
taining precision and recall close to 1 constitutes
the horizon of any supervised algorithm. For ex-
ample, an algorithm that would predict ”noise”
for all particles would have a recall of 1 and rela-
tively poor precision for the category ”noise”.

PFT Airbubbles Cryptophytes Microphytoplankton

Model/Metric Precision Recall Precision Recall Precision Recall

CNN

LGBM

FFNN

kNN

SVM

PFT Nanoeukaryotes Noise Picoeukaryotes

Model/Metric Precision Recall Precision Recall Precision Recall

CNN

LGBM

FFNN

kNN

SVM

PFT Prochlorococcus Synechococcus

Model/Metric Precision Recall Precision Recall

CNN

LGBM

FFNN

kNN

SVM

4.2 Prediction of Endoume Time
Series data

This section illustrates the ability of our model to
be deployed in production and to provide accurate
estimates of the count of each class on a daily ba-
sis. Figure 4.2 presents the time series obtained
with manual counts and automatic count for the
synechococcus, the noise and the nanoeucaryote
particles.

[labels too small and the end of the time series is
not predicted]

The noise and synechococcus particles are
well counted whereas the model tends to largely
overcount the nanoeukaryotes. Looking at the
confusion matrix, it reveals that a part of the
noise is actually taken to be nanoeukaryotes [to
check]. What is striking is that the quality of
the predictions does not seem to vary with the
hour of the day nor the month on which there are
performed. It means that our predictions are not
influenced by the cell divisions that might occur
at an infra-day frequency.

[detail how the training set was built]

[Sortir la série temporelle de diffusion et flu-
orescence → conversion automatique en taille,
montre bien la diversité morphologique].
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4.3 Estimation of the generaliza-
tion power of the model

Finally, we provide an illustration of how general
the features learnt by the model are by choosing
two different data sources for training and testing
the model.

The model is here trained on FUMSECK data
[add source]. The FUMSECK campaign was a
campaign that took place in 2019 in the Ligurian
Sea but far from the coast, contrary to the En-
doume acquisitions that are conducted a few me-
ters away from the coast. Once trained on this
data 1, the model is used to predict samples taken
at the Endoume station. The next figure presents
a 2D cytogram of the Total Red Fluorescence
(area under the curve) as a function of the To-
tal Orange Fluorescence. This representation is
often used by cytometrists to separate ... from ...

Figure 1: Manual vs. automated count

[Image to replace with the new one and then
add interpretation]

5 Discussion

Our work aimed at providing a better under-
standing of the magnitude of manual classifica-
tion biases. It confirms that less represented
groups suffer more from these biases than the
best represented ones [TO CHECK]. This high-
lights the need for data reviewed by several re-
searchers/technicians in order to obtain good
ground-truth data for model training. Such multi-
reviewed datasets are more and more popular in
the Machine Learning community, the best exam-
ple being the ImageNet repository [6]. As a result
we call for the creation of an equivalent repository

for cytometric curves PFT recognition.
This is all the more so necessary that the pre-
diction error obtained by our network lies in the
same error range as manual classification. Hence,
better data may be even more useful than explor-
ing better model specifications in order to achieve
better performance.

Through this work we propose a full PFT pre-
diction pipeline able to make quasi-real time PFT
identification at the cell level. The total train-
ing time of our model is of less than a minute
for a training set of nearly 45,000 observations
on Google Collab GPU [give more details about
machine hardware] in contrast to several hours
or days of Residual Networks transfer learning on
images as in González & al. (2019) [8]. The data
pre-processing and in particular the interpolation
of the curves is actually the slowest part of our
automated pipeline (between 1 and 2 minutes)
whereas the prediction themselves take only a
few seconds. This is explained by the fact that
the curves are for the moment interpolated in a
sequential manner, observation per observation.
More efficient methods have to be implemented
to reduce this computational bottleneck.

Thanks to new software developments, the
pipeline will soon be able to feed the predictions
back into the cytometric software CytoClus c©and
enable the oceanographers to manually modify
the automated classification boundaries of the
PFTs that seem erroneous to them. In this re-
spect, our pipeline could also be used as a turnkey
pre-clustering tool made to speed up the manual
clustering tasks.

Concerning the network itself improvements
are possible. Our methodology is based on a
”classify and count” approach which is strongly
criticized by González & al. (2019) [8]. Indeed,
our pipeline attributes each cell to a PFT and
then count the number of cells in each PFT.
González & al. (2019) [8] present a reformulation
of the cells count problem, called ”quantification
problem” in the literature, and show that training
a series of one-versus-all simple predictors on fea-
tures extracted from the network is better suited
for this task. This will be investigated in future
research.
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Finally, this work is a preliminary work in or-
der to study the behaviour of the PFT dynam-
ics on Endoume data. Indeed, with a FLR6 and
FLR25 acquisitions every two hours, the data load
is hardly treatable by a single person and needs
to be automated. With our model in produc-
tion, future research will dwell on the behaviour of
the PFTs with respect to environmental variables
such as temperature, salinity or nutrients.
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A Representations of an observation

Figure 2: Matrix and curves representation of the five curves of an observation
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B Model specification used

Figure 3: Model specification

C Decision boundaries learnt

D Hyperparameters chosen

This section presents the final architecture choice used for all the results presented below. The best
performance was obtained for the focal loss and the Ranger optimizer. The following table presents
the main hyperparameters of our model.
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Hyperparameters α batch size Dropout γ Optimizer Radam learning rate Lookahead slow step size Lookahead Sync period

Value 6.980E-4 256 5.093E-3 2.046 Ranger 3.810E-3 2.074E-1 10

E Listmode features
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