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Abstract

Scanning flow cytometry (SFCM) is characterized by the measurement of time-resolved

pulses of fluorescence and scattering, enabling the high-throughput quantification of phyto-

plankton morphology and pigmentation. Quantifying variation at the single cell and colony

level improves our ability to understand dynamics in natural communities. Automated high-

frequency monitoring of these communities is presently limited by the absence of repeat-

able, rapid protocols to analyse SFCM datasets, where images of individual particles are not

available. Here we demonstrate a repeatable, semi-automated method to (1) rapidly clean

SFCM data from a phytoplankton community by removing signals that do not belong to live

phytoplankton cells, (2) classify individual cells into trait clusters that correspond to func-

tional groups, and (3) quantify the biovolumes of individual cells, the total biovolume of the

whole community and the total biovolumes of the major functional groups. Our method

involves the development of training datasets using lab cultures, the use of an unsupervised

clustering algorithm to identify trait clusters, and machine learning tools (random forests) to

(1) evaluate variable importance, (2) classify data points, and (3) estimate biovolumes of

individual cells. We provide example datasets and R code for our analytical approach that

can be adapted for analysis of datasets from other flow cytometers or scanning flow

cytometers.

Introduction

Flow cytometry (FCM) has enabled the monitoring of natural microbial communities by cap-

turing point estimates of cellular characteristics and images, respectively ([1–7]. Developed
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more recently, scanning flow cytometry (SFCM) records time-resolved pulses of fluorescence

and scattering for every cell [4,8–10]. The fluorescence and scattering pulses are summarized

using parameters that characterise changes in morphology and pigmentation over the length

of a cell. This vast amount of individual-level information can be used to quantify the distribu-

tions of important cellular traits within communities. High-throughput quantification of traits

governing organism-environment interactions [11] would increase our ability to understand

ecological and evolutionary changes in microbial communities. However, the utility of tradi-

tional FCM and scanning flow cytometry (SFCM) in monitoring natural communities has

been limited by a lack of protocols that allow us to automate 1) cleaning of SFCM data by

removing signals that do not belong to living cells, 2) classifying individual cells into functional

groups, and 3) quantifying the biovolumes of individual cells, and the total biovolumes of the

whole community and major functional groups (we follow convention by referring to cyano-

bacteria, diatoms, etc. as ‘functional groups’, but these groups are defined taxonomically). The

first two goals are a challenge in FCM and SFCM analyses because validating results from

these analyses is difficult in the absence of images (which are available only in imaging flow

cytometers, for which high-throughput analytical methods are available e.g. [6,12]). This paper

demonstrates a protocol to achieve these three goals in FCM or SFCM datasets.

Cleaning datasets (i.e. removing signals that are not from live cells) and identifying func-

tional groups in FCM has traditionally been done manually. This has involved visually identi-

fying clusters of points with similar trait values using small numbers of bivariate plots. These

manually-identified clusters are used to separate measurements of live cells from other signals

(‘gating’), and to identify distinct cell types for further analyses. However, a manual sample-

by-sample approach is not practical when large numbers of samples are measured, such as in

high-frequency monitoring efforts or large experiments. Additionally, the large number of var-

iables of unknown importance captured by SFCM makes the choice of variables for plotting

difficult, and the results sensitive to these choices. Previous efforts to avoid these problems in

FCM and SFCM have involved focusing on very small numbers of variables and using (i) linear

thresholds for separation of signal types, which neglects the possibility that thresholds may be

nonlinear, in single or multiple dimensions, or more recently (ii) a variety of clustering algo-

rithms to identify groups of points that are similar to each other in multiple dimensions

[9,10,13–17]. The use of clustering algorithms reduces subjectivity associated with cluster iden-

tification and makes analyses repeatable. We have adapted this approach to scale easily across

large SFCM datasets using limited computing resources.

Estimating the biovolume of cells and colonies is an important goal in the phytoplankton,

which are responsible for nearly half of global primary production [18]. Cell biovolume is also

a major determinant of how individuals interact with their abiotic and biotic environment.

Called a ‘master trait’, biovolume influences nutrient-uptake rates, nutrient quotas, predator

avoidance, and low-light performance [19–21]. Additionally, distributions of biovolume can—

in combination with cell density (typically estimated by flow cytometers)—provide us with

accurate estimates of total phytoplankton community biovolume. This community biovolume

is highly correlated with total phytoplankton biomass, the most important algal parameter

characterizing water quality. Despite its importance, quantifying biovolume using FCM and

SFCM remains a challenge because of the complex shapes that phytoplankton take [22]. Pres-

ent approaches to estimating biovolume involve the use of a single scattering channel and are

based on calibrated relationships with beads [9,23]; they therefore assume that phytoplankton

cells possess similar scattering properties to these beads. However, scattering properties vary

between phytoplankton taxa based on differences in cell wall, vacuoles, and internal cellular

structure, necessitating the development of better methods for biovolume estimation.

Quantifying phytoplankton using SFCM
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Identifying the functional groups that phytoplankton belong to is necessary if we are to

understand ecological patterns because members of these groups share similarities in bio-

chemistry, edibility, toxicity and roles in biogeochemical cycles [21,24]. Although we follow

convention by referring to ‘functional groups’, these groups are defined taxonomically (e.g.

cyanobacteria, diatoms, chrysophytes, green algae, etc.), but at different levels in the taxonomic

hierarchy (phylum Cyanobacteria as opposed to class Bacillariophyceae). The term ‘functional

group’ retains its usefulness because the groups are paraphyletic: some members of the clades/

taxonomic groups are no longer phytoplanktonic (e.g. plants exist within the clade of the

green algae). Identification of functional groups by SFCM is possible because groups differ in

their autofluorescent photosynthetic pigments [24], leading to differences in cell absorption

and emission profiles [25].

The protocol that we present here (outlined in Fig 1) enables the quantification of the cell

densities and biovolumes of phytoplankton communities and their major constituent func-

tional groups. It relies on three tools: (i) multiple training datasets that we generated, (ii) an

unsupervised clustering algorithm (flowPeaks [26]), and (iii) a machine learning algorithm

(random forests [27]). These tools are used for three distinct roles: (1) identifying important

variables for clustering, (2) classifying points into clusters, and (3) estimating cell biovolumes.

Our advance consists in coupling these together in a manner that enables the processing

and analysis of large FCM and SFCM datasets without the use of specialised computing

resources such as high performance computing facilities. Unsupervised clustering algorithms

identify groups of points that are similar to each other in multiple dimensions [28,29]. Here

we use one such algorithm (flowPeaks [26]) that has previously been shown to provide reason-

able results when applied to phytoplankton populations [17]. Random forests are a machine

learning tool composed of ensembles of decision trees that can be used to identify features that

separate groups in high-dimensional data. Each component decision tree uses a random subset

of 66% of the dataset, and a randomly selected subset of variables that are assessed for correla-

tion strength at each node. By aggregating predictions from all decision trees, random forests

limit the overfitting problems associated with the use of individual decision trees [27]. No

assumptions of linearity are required, with the algorithm capable of identifying curved bound-

aries in multiple dimensions. Additionally, they can be used to rank the importance of vari-

ables by assessing the differences in error rate (or alternatively, tree node purity [27]) when

individual variables are permuted across all component decision trees. While a number of

machine learning approaches could be applied to FCM and SFCM data, random forests have

the advantage of being flexible, reasonably fast, and robust, negating the need for specialized

computing resources.

We rely on training datasets based on lab cultures to (1) identify the traits that are best at

distinguishing live cells from other signals, (2) distinguish functional groups from each other,

and (3) quantify how all measured SFCM traits relate to cell biovolume measured by micros-

copy. Briefly, we used the most important variables identified by a random forest (applied to

the lab culture training dataset) in combination with the flowPeaks algorithm [26] to clean

SFCM data and to identify functional groups of cells in the cleaned data. The data we used to

test this protocol were collected from a natural lake community across several months of auto-

mated monitoring. We used two additional random forests trained on clustered data to first

classify all points from 191 files containing >20 million data points into phytoplankton cells

and other particles, and subsequently classify the cells into clusters corresponding to func-

tional groups. We used a fourth random forest trained on our lab culture training dataset to

estimate the biovolume of every phytoplankton cell based on all the measured SFCM

parameters.

Quantifying phytoplankton using SFCM
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We describe this procedure in detail below and validate it using 191 microscopy measure-

ments corresponding to the same depths and times of the SFCM measurements (Fig 1). We

include the complete SFCM dataset that we used to evaluate this method on the data repository

Zenodo, accessible at https://doi.org/10.5281/zenodo.977772 [30]. We also include code for

the entire analysis on Github, accessible at https://doi.org/10.5281/zenodo.999747 [31], imple-

mented in the R software environment [32]. Associated microscopy data used in this paper

may be found in S1 and S2 Datasets.

Fig 1. Flow chart illustrating the method we describe in this paper. We have divided this into two parts for clarity: A) Data

cleaning, and B) Cell density and biovolume estimation; the output of part A is the primary input for part B. We use two

abbreviations: RF for ‘random forest’ and FG for ‘functional group’. Yellow boxes indicate datasets, purple boxes indicate algorithms,

the green box indicates the final product obtained, and white boxes contain other operations, objects or data manipulations.

https://doi.org/10.1371/journal.pone.0196225.g001
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Methods

1. Overview of protocol

Our approach is shown in flow chart form in Fig 1. It involves 10 steps:

1. Generation of a training dataset using lab cultures with known species identity, functional

group identity, and mean cell biovolume (Table 1).

2. Identifying the parameters that most accurately distinguish between live cells and all other

signals jointly (a combination of bacteria, detritus, and electronic noise), using the training

dataset.

3. Identifying clusters of similar points in a subset of the field dataset based on the parameters

identified in step 2.

4. Classifying points from the complete field dataset into these clusters, and removing all

points except for those from live cells (data cleaning).

5. Identifying the parameters that most accurately distinguish between different functional

groups, using the training dataset.

6. Identifying clusters of similar points (corresponding to different functional groups) in a

subset of the cleaned field dataset based on the parameters identified in step 5.

7. Classifying all cells from the cleaned field dataset into these clusters.

8. Training a machine learning algorithm (a random forest) to estimate the biovolumes of

individual cells based on all measured SFCM parameters, using the training dataset.

9. Using the trained random forest from step 8 to estimate the biovolumes of every cell in the

cleaned field dataset based on all measured SFCM parameters.

10. Estimating cell density and biovolume of the total phytoplankton community and of the

major clusters (corresponding to functional groups), using the assigned clusters for each

individual cell (from step 7) as well as their biovolume estimates (from step 9) and cell

density estimates.

2. Sampling campaign

Between August 17th and October 26th 2014, we collected SFCM measurements at 6 depths

(1.0, 2.5, 4.0, 5.5, 7.0 and 8.5 m) every 4 hours in Greifensee, a eutrophic lake in Switzerland

Table 1. Cultures used in biovolume estimation. Mean biovolume values of these cultures were estimated by microscopy as part of this study.

Species Functional group Coloniality Mean biovolume (μm3)

Synechococcus sp. Cyanobacterium Unicellular 13.4

Microcystis aeruginosa Cyanobacterium Unicellular (in culture) 17.2

Chlorella sp. Green alga Unicellular 28.7

Ankistrodesmus bibraianus Green alga Unicellular 31.6

Chroomonas sp. Cryptophyte Unicellular 60.8

Synura sp. Chrysophyte Unicellular 152.7

Cyclotella cf. glomerata Diatom Unicellular 226.2

Cryptomonas sp. Cryptophyte Unicellular 896.8

Asterionella formosa Diatom 6 cells per colony, with rare exceptions 1964.8

Anabaena flos-aquae Cyanobacterium Long filaments with highly variable numbers of cells. 15478.7

https://doi.org/10.1371/journal.pone.0196225.t001
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(47.35˚N, 8.68˚E), using the automated monitoring station Aquaprobe [4]. We also collected

weekly microscopy samples at every depth within 1 hour of an SFCM measurement, obtaining

a set of paired SFCM and microscopy measurements. A small number of SFCM samples were

lost, leaving us with 191 paired samples [30].

Over this time period, we saw environmental changes of approximately 15˚C in water tem-

perature, and variation of an order of magnitude in dissolved phosphorus concentration and

N:P ratio.

The Office of Waste, Water, Energy and Air (AWEL) of Canton Zürich provided permis-

sion for in situ monitoring.

3. Microscopy protocol

3.1 Microscopy sample collection and counting. Microscopy samples were collected

manually using a Niskin bottle. The Niskin bottle collects a vertical column of water 46 cms in

length, which we centred at each of the 6 depths sampled by SFCM (therefore, the microscopy

samples average over a water sample 46 cms in length as opposed to 1 cm in length as in the

case of SFCM). 300 mL of water was fixed using Lugol’s solution and stored in a brown glass

bottle in the dark till measurement.

Cells were counted using a Utermöhl counting chamber (3 mL) under 200X and 400X mag-

nification [33]. 40 fields were counted and identified to a species level in most cases, and to the

genus level in the remaining cases. Every sample was measured under both magnifications,

with different species counted in each case based on their size.

3.2 Microscopy biovolume estimation. The total biovolumes of the whole community

and of the individual functional groups were calculated by multiplying the cell densities of

each species (quantified by microscopy as described in section 3.1) by their mean per-cell bio-

volumes, and summing appropriately. The mean per-cell biovolume values of each species

were taken from an existing, unpublished database of measurements made on individual cells

from the same lake, Greifensee (Buergi unpublished), using standard protocols. This biovo-

lume database is distinct from the measurements presented in Table 1 (which only refers to

the training dataset). We used this second biovolume dataset for estimating biovolumes of

field communities because i) we do not possess cultures of most species in the lake, and ii)

though cultures of most species may be obtained from culture collections, these would be less

representative, being strains from different environments and adapted to laboratory condi-

tions. In contrast, our dataset was made using measurements of the same species from the

same lake in previous years. Therefore, any influence of local environmental conditions on

biovolumes was accounted for in these biovolume measurements. Intraspecific variation and

changes through time were not considered, but we believe this is likely to be a small source of

error because intraspecific variation in cell biovolume is considerably lower than interspecific

variation (which can be>7 orders of magnitude, [34]).

4. SFCM protocol

4.1 Instrument description. SFCM measurement was performed using the CytoSense

(http://www.cytobuoy.com), which is designed to characterize the scattering and fluorescence

of individual particles; here we use it to study phytoplankton cells. The instrument measures

particles across a large proportion of the phytoplankton length range, between approximately

2 μm and 1 mm in length. Although this instrument is capable of taking images, it is unable to

resolve small cells clearly (approximately <10 μm). As these small cells are abundant in natural

systems such as freshwater lakes, it necessitated the development of the method we present

here.
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Particles cross two coherent 15mW solid-state lasers (488 nm and 642 nm). Cells absorb

and scatter these wavelengths, and also fluoresce at longer wavelengths determined by their

specific pigment composition. Scattering (forward and sideward; the latter is typically referred

to as ‘side-scatter’ in the flow cytometry literature) is measured, as well as fluorescence at each

of three channels hereafter referred to as Red (668 – 734nm), Orange (601 – 667nm) and Yel-

low (536 – 601nm). These channels are listed below, followed by a more detailed description:

Red fluorescence Channel Laser 1: 488: 701/33

Red fluorescence Channel Laser 2: 642: 701/33

Orange fluorescence Channel: 488: 634/33

Yellow fluorescence Channel: 488: 569/33

Fluorescence in the Yellow and Orange channels is exclusively stimulated by the 488nm

laser, while fluorescence in the Red channel is stimulated by both lasers. Therefore, the Red

channel is electronically deconvoluted into Red 1 (from the 488nm laser) and Red 2 (a weaker

signal from the 642nm laser). These wavelength bands are not highly specific in terms of the

pigments they target, but generally target chlorophyll-a (Red 1), phycocyanin (Red 1 and Red

2), phycoerythrin (Orange), and carotenoids and decaying pigments (Yellow).

Hereafter, names of parameters representing the different fluorescence channels are pre-

ceded by ‘FL’, the Red 1 channel is referred to as ‘FL.Red’ and the Red 2 channel as ‘X2.FL.Red’.

Names of parameters representing the scattering channels are preceded by ‘FWS’ (forward

scatter; typically abbreviated FSC in the flow cytometry literature) and ‘SWS’ (sideward scatter

or side-scatter’ typically abbreviated SSC in the flow cytometry literature).

The signal produced by each particle is a time series of measurements for each channel,

which describe the variation in scattering and fluorescence over the length of the particle. This

high-resolution time series describes a pulse for each channel (4 fluorescence and 2 scattering).

These pulses may be highly irregular in shape (S1 Fig) and are therefore characterized using a

number of parameters (see S1 Table for parameter descriptions).

4.2 Instrument configuration. Internal flow rates were set at 2 μL.s-1. A trigger threshold

of 99.7 mV on the sideward scatter channel was enforced; particles whose scattering did not

rise above this level were therefore not recorded. Field samples measurements were terminated

when 500 μL was measured or 9 minutes elapsed, whichever was earlier.

4.3 Field sampling procedure. Every four hours, the sampling tube was automatically

deployed to each of the 6 depths by the automated station (described in [4]). Water samples

were pumped to a 250 mL sampling chamber at the surface through a tube with a 1-cm diame-

ter opening, making these highly depth-specific measurements. The sampling chamber was

flushed with water from the sampling depth four to five times over 2 minutes before the Cyto-

Sense collected a water sample of up to 500 μL for measurement.

4.4 Generation of training datasets using lab cultures. Our training dataset for the ran-

dom forest served 3 purposes: (1) to enable the identification of parameters that most strongly

distinguish between live cells and other signals, (2) to enable the identification of parameters

that most strongly distinguish between cells belonging to different functional groups, and (3)

to train the algorithm to estimate cell biovolume based on all the measured CytoSense

parameters.

We measured ten laboratory cultures belonging to multiple functional groups (Table 1).

In clonal lab cultures, manual identification of live cells and other signals is straightforward

(examples in S2 Fig). We generated a dataset containing approximately 1,200 measurements of

live cells (manually identified as in S2 Fig) and 8,400 measurements of other signals, equally

sampled from all species’ measurements. The proportion was chosen to approximately mirror

the low proportion of live cells expected from field measurements.
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We note that overall performance will likely improve if the training dataset is improved.

This may be done by increasing the number of species, number of functional groups, range of

sizes, and range of culture conditions.

4.5 Data cleaning. 4.5.1 Data cleaning—Identifying parameters that distinguish live phy-

toplankton cells from other signals. The CytoSense measures 94 parameters for every particle.

However, due to the ‘curse of dimensionality’ problem for clustering algorithms, we chose to

reduce the number of variables examined. We used a machine learning algorithm, a random

forest [27], to identify the variables that most strongly distinguished between live cells and

other signals. Most importantly for this purpose, random forests can be used to generate a

ranking of variable importance based on the change in classification error rate when a particu-

lar variable is permuted across individual decision trees. For this and all subsequent uses of

random forests, we used the R package randomForest [35].

Before analysis, we log-transformed all variables whose minimum value was > 0, because

most variables exhibited highly skewed distributions that could prove challenging for subse-

quent analyses. Then, to avoid problems associated with multicollinearity, we removed one

member of all pairs of variables in the laboratory dataset whose correlation coefficient

was> 0.8 or< -0.8. We were left with 51 variables. We trained a random forest with 10,001

trees on this dataset and found that the 10 most important variables enabled a clear distinction

between live cells and other signals (Fig 2). In descending order of importance, they were: FL.

Red.Range, X2.FL.Red.Range, X2.FL.Red.Gradient, FL.Red.Number.of.cells, X2.FL.Red.Last,
FWS.Range, FL.Red.Fill.factor, X2. FL.Red.Fill.factor, FL.Yellow.Range, and FL.Orange.Range.

We note that the specific number of variables used is a feature of the dataset being considered,

Fig 2. Importance of different traits in distinguishing between particle types, as identified by random forests. We applied random forests to

laboratory training data (S2 Fig) to identify the most important variables in separating particule types. Variable importance is assessed using a Gini

coefficient that measures the change in classification error when a variable is omitted [27]. The 30 most important variables are shown here. A)

Variables that most strongly distinguish between live cells and other signals (electronic noise, detritus and bacterial cells). The top ten were used for

unsupervised clustering of the raw field data. B) Variables that most strongly distinguish between major functional groups. The top eight were used for

unsupervised clustering of the cleaned field data.

https://doi.org/10.1371/journal.pone.0196225.g002
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and readers are advised to explore using differing numbers of variables to identify the optimal

number for their data.

4.5.2 Data cleaning: Generating a random subset of the raw field data. The complete dataset

of 191 measurements contained >20 million particles and could not be clustered simulta-

neously using standard computing resources. Furthermore, clustering each measurement sep-

arately would have led to the identification of different clusters as the community changed,

limiting the possibility to make comparisons between measurements. We therefore generated

a file containing an equal number of randomly selected data points from every measured sam-

ple, to distinguish between living phytoplankton cells and other signals. The data subset con-

tained approximately 100,000 points which was both computationally tractable, and large

enough to enable the identification of distinct clusters containing relatively low numbers of

points that may be missed with smaller file sizes.

4.5.3 Data cleaning: Unsupervised clustering of the subset of raw data. We selected the 10

variables identified in section 4.5.1, log-transformed them and used the flowPeaks algorithm

[26] to identify clusters of similar data points within the 100,000 point raw data subset. flow-
Peaks (implemented in the R statistical environment [32]) uses a k-means-based algorithm to

first cluster the entire dataset into large numbers of small clusters, and then merges clusters

based on density gradients. The smoothness of the density function is determined by tuneable

parameters; we used values of 0.25 for tol, 0.05 for h0, and 2 for h [26] as these provided clus-

ters that matched our expectations based on visual examination of 3D plots. However, the best

parameter values may differ between datasets.

The algorithm identified 8 clusters, which we visually inspected using 3D plots (S3 Fig, S1

and S2 Videos, S2 Table). From these plots, we identified 7 clusters that we expected to corre-

spond to live phytoplankton cells; together they constituted 5% of the data. The remaining

cluster corresponded to signals we were uninterested in, and cannot distinguish between: a

combination of bacteria, dead phytoplankton, detritus, and electronic noise. Phytoplankton

clusters were primarily characterized by high pigment fluorescence, particularly FL.Red.Range
(a proxy for chlorophyll-a) (S2 Table) and high forward scatter (FWS).

4.5.4 Data cleaning: Using random forests to classify raw data points and clean dataset. We

used a second random forest [27,35] to classify all points in every sample into one of the eight

clusters identified in the previous step using flowPeaks (code available at [31]). We trained the

random forest with 1,001 trees on the clustered 100,000 point raw data subset, allowing it to

identify nonlinear boundaries between the 8 clusters. The out-of-bag classification error rate

of this random forest was <2%, indicating acceptably accurate performance in this classifica-

tion step. When applying this method, this error rate (and the entire confusion matrix, or

receiver operating characteristic curves) can be to evaluate whether the classifier performs

acceptably well. We then used this random forest to classify all points in every sample into one

of the 8 clusters identified earlier. Points identified as belonging to one of the 7 phytoplankton

clusters were retained and the remainder discarded. The retained points from each sample

were saved in separate files for further analysis.

4.6 Functional group identification. We identified the functional groups that individual

cells belonged to by essentially repeating the data cleaning procedure (section 4.5) on the

cleaned data. There were minor differences in procedure that we note below.

4.6.1 Functional group identification: Identifying parameters that distinguish between phy-

toplankton functional groups. For this step, we used the lab culture training dataset containing

1,200 measurements of live phytoplankton cells only, belonging to five different functional

groups–chrysophytes, cryptophytes, cyanobacteria, green algae, and diatoms (Table 1).

We then used a random forest to identify the variables that most strongly distinguished

between these functional groups. As earlier, we log-transformed all variables whose minimum
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value was> 0 and removed one member of all pairs of variables in the laboratory dataset

whose correlation coefficient was > 0.8 or < -0.8. We were left with 43 variables. We trained a

random forest with 10,001 trees [35] and found that 8 variables enabled a clear distinction

between cells belonging to different functional groups (Fig 2). In descending order of impor-

tance, they were: FL.Red.Range, Red1Red2.ratio, FWS.Length, FL.Orange.Range, X2.FL.Red.

Range, FL.Red.First, X2.FL.Red.Gradient and FWS.Fill.factor.

4.6.2 Functional group identification: Generating a random subset of the cleaned field data.

To identify phytoplankton cells belonging to different functional groups, we generated a file

containing an equal number of randomly selected data points from every cleaned data file, for

a total of approximately 100,000 points.

4.6.3 Functional group identification: Unsupervised clustering of the subset of cleaned data.

We selected the 8 variables identified in section 4.6.1, log-transformed them and applied flow-
Peaks [26] to identify clusters of similar data points. We used the same parameter values as ear-

lier (tol = 0.25, h0 = 0.05, and h = 2). The algorithm identified 12 clusters, which we visually

inspected using 3D plots (S4 Fig, S3 and S4 Videos, S3 Table). We limited our subsequent anal-

yses to the 4 clusters that formed >5% of the dataset (totalling>90% of the data), but note

here that (i) functional groups may comprise multiple clusters and (ii) rarer functional groups

are unassigned. The latter is not a limitation of the method; a more detailed laboratory com-

parison of the trait signatures of all functional groups would permit the assignment of every

cluster to a functional group.

4.6.4 Functional group identification: Assignment of clusters to specific functional groups.

Based on the fluorescence and scattering signals of these clusters and their relative abundance

in the microscopy data, we assigned the 4 clusters to 4 functional groups. We note that our

microscopy data showed that diatoms, dinoflagellates, euglenophytes, and desmids were

almost entirely absent from the lake during the periods we sampled, leaving us with four well-

represented functional groups–chrysophytes, cryptophytes, cyanobacteria, and green algae.

Cyanobacteria are characterised by a low Red1Red2.ratio value (indicative of high phycocy-

anin content), which was characteristic of Cluster 2 (S3 and S4 Tables). Our assignment of the

remaining clusters is necessarily more speculative and would be improved by a broader sam-

pling of the phenotypic diversity of these groups using lab cultures. Cluster 1, the most abun-

dant group in the SFCM data, was designated as chrysophytes, the most abundant eukaryotic

group in the microscopy counts. Cluster 3 was characterized by a low X2.FL.Red.Gradient and

FL.Red.First, as well as an intermediate Red1Red2.ratio, indicative of cryptophytes. Cluster 4

was characterized by relatively high Red1Red2.ratio and FL.Red.Range, suggesting that they

represent green algae. Note that in most cases other than Red1Red2.ratio, we did not have an a
priori expectation relating to the importance of these variables in differentiating between func-

tional groups. Therefore, we do not speculate on the reasons behind their importance here.

4.6.5 Functional group identification: Using random forests to classify cleaned data into

trait clusters. We trained a random forest with 1,001 trees on the 100,000 point cleaned data

subset, allowing it to identify nonlinear boundaries between the clusters identified in the previ-

ous stage. Out-of-bag error rates for this random forest were <2%, again suggesting acceptably

low levels of classification error. We then used this random forest to classify all cells in the

cleaned data files into one of the 12 trait clusters identified earlier. We recorded the cell densi-

ties of every trait cluster in every sample.

4.7 Biovolume estimation. 4.7.1 Biovolume estimation: Estimating the biovolumes of sin-

gle cells and colonies. We trained a random forest with 10,001 trees on our lab culture training

dataset (Table 1) to estimate the biovolumes of individual cells using all measured SFCM

parameters. We used all the parameters and a training dataset with taxa from all the major

functional groups in order to train a random forest that accounts for taxonomic differences in
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scattering and pigmentation properties. This approach was substantiated by our finding that

Red1Red2.ratio (indicative of whether a cell was a cyanobacterium or a eukaryote) was the

most important predictor of biovolume (S5 Fig) instead of scattering, which has previously

been used in biovolume estimation of phytoplankton cells by SFCM [9,10]. Furthermore, the

trained random forest had a model R2 (based on out-of-bag estimates) of 0.93 as opposed to a

linear model based on the best single scattering variable (FWS.Length), which had an R2 of

0.50.

We used this trained random forest to predict the biovolume of every individual cell in our

cleaned field data based on all their SFCM parameters.

4.7.2 Biovolume estimation: Estimating the density of the whole community and major

functional groups. We first quantified the cell density of each community by multiplying the

particle concentration (estimated by the CytoSense) with the proportion of particles that were

live cells in the sample. Subsequently, we estimated the cell density of each cluster (functional

group) by multiplying the cell density of the whole community by the proportion of live cells

in each sample belonging to the cluster.

4.7.3 Biovolume estimation: Estimating the total biovolume of the whole community and

major functional groups. We estimated total biovolume of each community by multiplying the

cell density estimated in section 4.7.2 with the mean biovolume of all cells in the community.

Similarly, we estimated the biovolume of each cluster (functional group) by multiplying the

estimated cell density of each cluster by the mean biovolume of all cells belonging to that

cluster.

Results and assessment

We assessed the accuracy of our data cleaning, functional group identification, and biovolume

estimation procedures by using field data to compare SFCM estimates with microscopy esti-

mates of (1) cell density at the whole-community level, (2) total biovolume at the whole-com-

munity level, (3) cell density of the major functional groups, and (4) total biovolume of the

major functional groups.

Quantitative comparison of SFCM and microscopy results

Cell density of the phytoplankton community. SFCM estimates of whole-community

cell density were strongly positively correlated with microscopy estimates (r = 0.73, p<0.001,

Fig 3A). The slope of the regression between the two estimates is indistinguishable from the

expected value of 1 (mean = 0.99, CIs: 0.86, 1.13) and significantly different from zero

(p<0.001); the intercept is indistinguishable from the expected value of 0 (mean = -0.13, CIs:

-0.65, 0.38). Quantitative estimates of cell density were extremely similar in both measurement

methods. SFCM estimates were slightly lower on average, possibly due to (i) calibration of the

SFCM inlet pump, leading to lower flow rates and consequently cell density estimates, (ii) diffi-

culties in evaluating whether a cell was alive or dead in fixed microscopy samples, leading to

overestimation of the microscopy cell density, or (iii) break-up of colonial organisms during

preservation for microscopy. Whatever the underlying reason, the apparent difference is small,

and variation in SFCM cell density estimates accurately captures variation in cell density by

microscopy measurements.

Total biovolume of the phytoplankton community. SFCM estimates of total community

biovolume are strongly correlated with microscopy estimates (r = 0.67, p<0.001, Fig 3B). The

slope of the regression is indistinguishable from the expected value of 1 (mean = 0.90, CIs:

0.76, 1.05) and significantly different from zero (p<0.001); the intercept is indistinguishable

from the expected value of 0 (mean = -0.40, CIs: -0.54, 1.33). Quantitative estimates of total
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biovolume were similar in absolute magnitude over an approximately 30-fold range in biovo-

lume, but appear to be slightly underestimated. This underestimation is partly driven by

differences in cell density estimates (Fig 3A), because density estimates are involved in total

biovolume calculation. Differences in total biovolume are also influenced by our microscopy

biovolume estimation procedure: estimates were generated by referring to a database of mean

cell biovolumes and were not measured in the individual samples. Therefore, errors in our cell

size database are propagated through to our estimates of total community biovolume by

microscopy. However, intraspecific variation in cell biovolume is substantially lower than

interspecific variation (which varies by>7 orders of magnitude [34]), and so we expect that

this is at most a small source of error.

Cell density of the major functional groups. SFCM estimates of the cell density of major

functional groups were moderately to strongly correlated with microscopy estimates (r ranges

from 0.44 to 0.76, p<0.001 in all cases, Fig 4). Chrysophytes were the most abundant group

overall and also show the strongest correlation and quantitative agreement between estimates.

Cryptophytes and green algae show weaker correlations with slopes that were less than the

expected value of 1, but they also exhibited relatively low variation over the sampling period,

making it challenging to compare accurately. Cyanobacterial density estimates also showed a

strong positive relationship, but this relationship was influenced by a small number of micros-

copy measurements in which no cyanobacterial cells were identified. These samples appeared

to have been substantially overestimated by SFCM or underestimated by microscopy. This

may partly be explained by the lower detection limit and consequently lower sampling error of

SFCM measurements when compared to microscopy measurements, but may also be a result

Fig 3. Whole-community cell density and biovolume estimates are quantitatively similar when measured by SFCM and microscopy. Estimates of

whole-community cell density and biovolume by SFCM are strongly correlated with those by microscopy (on the log scale), and are quantitatively

similar. Each point represents a single depth-specific sample measured using both methods. The black line is the 1:1 line and the red line represents the

regression relationship. A) Cell density estimates are strongly correlated (r = 0.73, p<0.001). B) Whole-community total biovolume estimates are

strongly correlated (r = 0.67, p<0.001). The slope of the regression is indistinguishable from the expected value of 1 (mean = 0.90, CIs: 0.76, 1.05) and

the intercept is indistinguishable from the expected value of 0 (mean = -0.40, CIs: -0.54, 1.33).

https://doi.org/10.1371/journal.pone.0196225.g003
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of cell degradation in microscopy samples which were not properly fixed. Though the quanti-

tative estimates are substantially better if we exclude these points, the relationship remains rea-

sonably strong even if we include them by assuming a cell density of 50% of the detection

limit.

Fig 4. Cell density estimates of major functional groups are similar when measured by SFCM or microscopy. Estimates of cell density of four

functional groups by SFCM and microscopy are moderately to strongly correlated on the log scale (r between 0.44 and 0.76, p<0.001 in all cases). Each

point represents a single depth-specific sample measured using both methods. The black line is the 1:1 line and the red line represents the regression

relationship (with confidence bands). In a small number of microscopy measurements, no cyanobacteria were found. These points are plotted with high

transparency assuming that the true concentration was half the detection limit of 28 cells per mL. A small number of high-leverage points were

excluded from the regressions, but the effect of this exclusion on slopes and correlation coefficients is modest. These excluded points can be identified

in the plots because the regression lines do not extend to them.

https://doi.org/10.1371/journal.pone.0196225.g004
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Total biovolume of the major functional groups. SFCM estimates of the total biovolume

of major functional groups were moderately to strongly correlated with microscopy estimates

(r ranges from 0.41 to 0.75, p<0.001 in all cases, Fig 5). As with cell density, chrysophytes

showed not just a strong correlation between estimates from the two methods, but also highly

Fig 5. Total biovolume estimates of major functional groups are similar when measured by SFCM or microscopy. Estimates of total biovolume of

four functional groups by SFCM and microscopy are moderately well-correlated on the log scale (r between 0.41 and 0.75, p<0.001 in all cases). Each

point represents a single depth-specific sample measured using both methods. The black line is the 1:1 line and the red line represents the regression

relationship (with confidence bands). In a small number of microscopy measurements, no cyanobacteria were found. These points are plotted with high

transparency assuming that the true concentration was half the minimum cyanobacterial biovolume detected. A small number of high-leverage points

were excluded from the regressions, but the effect of this exclusion on slopes and correlation coefficients is modest. These excluded points can be

identified in the plots because the regression lines do not extend to them.

https://doi.org/10.1371/journal.pone.0196225.g005
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similar quantitative estimates. Cryptophytes and green algae exhibited a relatively small degree

of variation and differed in absolute value, but were positively correlated in both cases. As in

Fig 4, cyanobacterial estimates were reasonably accurate, but a small number of measurements

showed no cells in microscopy measurements even though the SFCM estimates were moder-

ately high. Notably, slopes and correlation coefficients are relatively similar in both cell density

and total biovolume. As cell density is used to estimate total biovolume, this suggests that the

discrepancy is largely caused by the cell density estimates, and that mean cell biovolume of

each group is being estimated accurately.

Assessment of the method

We have demonstrated that this method produces estimates of cell density and biovolume that

are reasonably well-correlated with estimates by microscopy, especially at the whole commu-

nity level. These correlations may have been even stronger if microscopy samples could be col-

lected at the same depth resolution as our SFCM measurements (we sampled a 46 cm-wide

water column for microscopy and a 1 cm-wide water column for SFCM). And although we

ignored less abundant clusters in this analysis because of limitations in the number of lab-mea-

sured taxa, our method can easily be expanded upon to include finer-scale variation and a

wider range of functional groups.

Our protocol (Fig 1) is composed of three parts that can each be improved upon with more

data or improved algorithms, while following essentially the same protocol. The strong agree-

ment between SFCM results and microscopy results from a complex natural community sup-

ports our claim. It improves on existing methods by (i) reducing the subjectivity associated

with manual cluster designation, and (ii) increasing the scalability of FCM and SFCM analyses

by enabling the study of datasets of arbitrarily large size using basic computing facilities. This

scalability is achieved by coupling unsupervised clustering with machine learning techniques

(which have frequently been used independently previously) and reducing the size of the

major tasks through the use of training datasets and data subsets.

However, there are important limitations to our method:

1) The generation of training datasets is necessary and can be time-consuming. Training

datasets must contain representatives of all groups present in the system under study (with the

possible exception of taxa that are rare both in terms of abundance and biovolume contribu-

tion). Functional groups are diverse and our training dataset for this study contains relatively

few species from each cluster, potentially biasing biovolume estimates. However, this can be

addressed by including more representative species from each group in the training dataset.

Perhaps more importantly, this training exercise will need to be done independently for every

instrument and possibly for changes in important instrument settings (such as photomultiplier

tube gain) as well.

2) In addition to being time-consuming, the value of training datasets relies crucially on the

assumption that traits measured are stable properties of individual cells, over time and space.

If traits are stable, our approach should be applicable to conditions outside those under which

training data are generated. The degree of stability in these traits is an empirical question that

needs to be verified. Though we do expect variation to occur (e.g. nutrient starvation should

lead to a decrease in pigmentation and therefore fluorescence), its magnitude is unknown.

Based on our understanding of pigmentation and cell morphology (which influence fluores-

cence and scattering respectively), as well as our success here under variable conditions in a

natural environment, we believe that traits are sufficiently stable to use this approach. How-

ever, if trait variation across environmental gradients is large, we would need to train machine

learning algorithms with datasets that have been generated under conditions where there is a
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large degree of variability, or across multiple environments. This would improve performance

by accounting for environment-dependent plasticity, which our random forest presently does

not account for. Functional groups that are similar to each other in traits may also not be dis-

tinguished well (i.e. there may be misclassification) if this plasticity leads to changes in their

trait distributions, or if they have contrasting trait-environment covariance patterns.

3) Many clustering algorithms have difficulties in identifying clusters that are highly nonlin-

ear in multiple dimensions. Unsupervised clustering is an active area of research and future

advances in clustering methods—especially density-based and neural network-based

methods—may alleviate some of these problems [36]. However, every such algorithm has its

own weaknesses and such improvements may come at the cost of other features (e.g. computa-

tional speed).

4) By clustering datasets with equal numbers of data points randomly selected from every

time point, we might miss out on clusters that are present for very short periods of the time

series. These clusters are poorly represented even if abundant for short time periods. This limi-

tation is even more relevant if our approach is used to study datasets collected across space

instead of time; clusters present at just one or two of a large number of sites may be difficult to

detect. Addressing this issue will require careful sampling, but may also be aided by advances

in clustering methods. A sequential clustering approach that re-clusters the data after the most

abundant cluster is removed may also be useful in identifying these cases.

5) Our assignment of clusters to functional groups is at present provisional, except in the

case of cyanobacteria, which are very strongly differentiated by their ratio of Red 1 to Red 2

fluorescence. This may be improved on by using instruments configured with more laser and

detectors than the one used here, enabling more precise targeting of the pigments characteris-

ing different functional groups. In the absence of additional lasers and detectors, the problem

may be mitigated by using larger training datasets with more representative species from each

functional group.

Future work may therefore most profitably expand on our work by using a much broader

training dataset to train machine learning algorithms. Capturing the entire range of functional

groups and a broad sampling of the phenotypic variation within these groups would enable the

classification of cells into functional groups (and potentially lower level taxonomic categories)

without the need for unsupervised clustering.

Discussion

Scanning flow cytometry has the potential to enable the high-frequency monitoring of natu-

ral phytoplankton communities in real time, improving our ability to understand their ecol-

ogy [4,9]. For some ecological questions, such as those relating to the influence of short-

term environmental changes on populations and communities, they are (along with imag-

ing flow cytometers) the only feasible measurement tool at present. Tools to automate the

analysis of FCM and SFCM data will greatly increase the utility of these instruments,

increasing our ability to understand the drivers of high-frequency dynamics in natural

communities.

A very large number of unsupervised clustering algorithms exist with differing strengths

and weaknesses [28,29,37,38], and we did not attempt to compare the efficacy of different algo-

rithms here. Instead, we use an algorithm (flowPeaks [26]) that has previously been applied to

phytoplankton populations [17] and provides rapid, reasonably accurate results using rela-

tively limited computational resources. More sophisticated algorithms that are capable of iden-

tifying points that do not below to any clear cluster (‘noise’) such as DBSCAN [39] may

improve on this, but they generally require computationally expensive calculations, including
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the distance between all pairs of points to be clustered. Our approach is flexible and alternative

algorithms can be substituted here if found to be more suitable.

A more general problem that our approach bypasses is that unsupervised clustering of

high-dimensional SFCM data suffers from the ‘curse of dimensionality’. Output is less reliable

as dimensionality increases, and visualisation of clusters also becomes difficult beyond three

dimensions [40]. Therefore, there is a strong need to reduce the dimensionality of the problem

for both reliable clustering and for visualisation. This may be done by two methods: (i) we

could use a dimension-reduction algorithm such as principal components analysis, or (ii) we

may limit the number of dimensions that we choose to cluster. We followed the second

approach here because the former suffers from the weakness that the major principal compo-

nents may not be meaningful in distinguishing between the signals we are interested in; in

other words, there may be more variation in unimportant dimensions than in important ones.

Although machine learning techniques have previously been applied to FCM data [12,41–

43], our work differs in using it for tasks beyond classification. We have also used machine

learning to predict biovolumes of individual cells, and to identify the phenotypic features that

most reliably distinguish between particle types (Figs 1 and 2). When used in combination with

unsupervised clustering, it constitutes a powerful and flexible tool in processing large FCM and

SFCM datasets. In principle, a machine learning algorithm trained on lab cultures may be able

to identify trait clusters in field data. However, in practice we need to couple this with unsuper-

vised clustering because trait cluster boundaries differ between lab and field communities. This

is because (i) natural communities usually contain species that are not in the training dataset,

and (ii) changes in environmental conditions may lead to plastic changes in fluorescence and

scattering, shifting the boundaries between clusters in multidimensional space.

Our method provides a repeatable, semi-automated protocol with which to process large

FCM and SFCM datasets using readily available computing resources and free software tools

(the R software environment and packages randomForest and flowPeaks). Our work integrates

existing tools—lab measurements, machine learning, and unsupervised classification—from

multiple fields to improve the speed, repeatability, and robustness of SFCM analysis.

We believe that this protocol will greatly increase the ease and speed with which large

SFCM datasets can be processed and analysed. In the future, automated (or semi-automated)

analytical tools such as these may enable the monitoring of water bodies for harmful algal

bloom development in real time, through classification of cells based on previously developed

training datasets. Cyanobacteria, which are responsible for freshwater harmful algal blooms,

possess fluorescence traits that were especially easy to distinguish with our instrument configu-

ration. Therefore, the identification and quantification of this taxon is simple. Examination of

a broader range of cyanobacteria may allow us to identify features that distinguish between

potentially toxic and non-toxic cyanobacterial taxa, improving the scope and accuracy of

water quality monitoring efforts. However, this protocol will also improve our ability to study

fundamental aspects of the physiology, ecology and evolution of phytoplankton communities,

by enabling their monitoring on time-scales orders of magnitude lower than is presently feasi-

ble using microscopy methods.

Supporting information

S1 Fig. Scanning flow cytometry pulse measurement, by the CytoSense. The instrument

measures 6 independent pulses: Forward Scatter (FWS), Sideward Scatter (SWS), Red Fluores-

cence 1 (FL.Red), Red Fluorescence 2 (X2.FL.Red), Orange Fluorescence (FL.Orange) and Yel-

low Fluorescence (FL.Yellow). Details of the specific wavelengths of these pulses may be found

in the Methods. Except for FWS, all pulses are measured by a single detector. FWS is measured
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by averaging the signal between 2 separate detectors. The Curvature pulse indicates the devia-

tion between the two FWS pulses.

(PDF)

S2 Fig. Using lab cultures to identify the variables that most strongly distinguish between

live cells and other signals. Based on prior knowledge, we manually identified the live cells

and other signals in lab cultures of phytoplankton. Here we show two examples (a) Chlorella
sp. and (b) Microcystis aeruginosa that illustrate this separation, using Maximum FL.Red and

Maximum FWS signals.

(PDF)

S3 Fig. Example 3D plots showing identified clusters in raw data. All clusters except #1

(black) were manually designated as belonging to phytoplankton cells based primarily on their

high fluorescence signals. Clusters 2–8 were subsequently re-clustered (Fig 1, S4 Fig) for phy-

toplankton group identification, because the large proportion in cluster #1 renders the identifi-

cation of smaller clusters more challenging. Axes for the plots are (a) FWS.Range, X2.FL.Red.

Range & FL.Red.Range, and (b) FL.Red.Fill.factor, FL.Yellow.Range & X2.FL.Red.Last. Ani-

mated versions of these plots can be found in S1 and S2 Videos.

(PDF)

S4 Fig. Example 3D plots showing identified clusters in cleaned data. Axes for the plots are

(a) Red1.Red2.ratio, FL.Orange.Range & FWS.Length, and (b) FL.Red.First, X2.FL.Red.Gradi-

ent & FL.Orange.Range. Animated versions of these plots can be found in S3 and S4 Videos.

(PDF)

S5 Fig. Random forest variable importance for estimation of cell biovolumes, determined

using laboratory culture measurements. Importance is estimated using % change in mean

squared error between trees that include individual variables and those that have those vari-

ables omitted. The 30 most important variables are shown here, but all variables were used in

subsequent estimation of cell biovolumes in the field data.

(PDF)

S1 Table. Description of CytoSense parameters.

(PDF)

S2 Table. Cluster characteristics of raw data and designated identities of the clusters based

on visual inspection. Trait values indicate the value at the centre of the clusters

(PDF)

S3 Table. Cluster characteristics of cleaned data and the designated identities for the most

abundant clusters. Trait values indicate the value at the centre of the clusters.

(PDF)

S4 Table. Characteristics of major functional groups based on lab training data.

(PDF)

S1 Video. Animated 3D plots showing identified clusters in raw data, shown on FWS.

Range, X2.FL.Red.Range & FL.Red.Range axes. All clusters except #1 (black) were manually

designated as belonging to phytoplankton cells. Clusters 2–8 were subsequently re-clustered

(Fig 1, S4 Fig) for phytoplankton group identification based primarily on their high fluores-

cence signals, because the large proportion in cluster #1 renders the identification of smaller

clusters more challenging.

(MP4)
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S2 Video. Animated 3D plots showing identified clusters in raw data, shown on FL.Red.

Fill.factor, FL.Yellow.Range & X2.FL.Red.Last axes. All clusters except #1 (black) were man-

ually designated as belonging to phytoplankton cells based primarily on their high fluorescence

signals. Clusters 2–8 were subsequently re-clustered (Fig 1, S4 Fig) for phytoplankton group

identification, because the large proportion in cluster #1 renders the identification of smaller

clusters more challenging.

(MP4)

S3 Video. Animated 3D plots showing identified clusters in cleaned data, shown on Red1.

Red2.ratio, FL.Orange.Range & FWS.Length axes.

(MP4)

S4 Video. Animated 3D plots showing identified clusters in cleaned data, shown on FL.

Red.First, X2.FL.Red.Gradient & FL.Orange.Range axes.

(MP4)

S1 Dataset. Dynamics of cell density (per mL) of individual phytoplankton species within

the lake, identified and quantified by microscopy.

(CSV)

S2 Dataset. Mean biovolumes (μm3) of phytoplankton species within the lake, identified

and quantified by microscopy in previous years (Buergi unpublished). Column ‘name_si-

ze_corrected’ contains the corrected taxon names that may be used for matching with other

databases, with rare exceptions for taxa that could not be identified to a species level (e.g.

2018Div. Cryptophyceen’).

(CSV)
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