OSU Pytheas ERDDAP OSU Pytheas
Accès aux données environnementales...
log in    
Erddap est un produit développé par : NOAA ERD    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Maupiti Hoe 2018 (NetCDF files) Subscribe RSS
Institution:  MIO UMR7294 CNRS / OSU Pytheas   (Dataset ID: Maupiti_nc_e6d1_11db_50f4)
Range: longitude = -152.2782 to -152.275°E, latitude = -16.4699 to 16.4711°N, altitude = -0.16081 to 0.59554m, time = 2018-07-05T20:08:00Z to 2018-07-17T04:08:00Z
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Subset | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    [The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  station_name {
    String cf_role "timeseries_id";
    String ioos_category "Identifier";
    String long_name "Station Name";
  }
  station_id {
    String ioos_category "Identifier";
    String long_name "Station Id";
    Float64 standard_name NaN;
    String units "string";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.53082128e+9, 1.53180048e+9;
    String axis "T";
    String ioos_category "Time";
    String long_name "datetime";
    String origin "01-JAN-1990 00:00:00";
    String source_name "datetime";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float32 actual_range -16.4699, 16.4711;
    String axis "Y";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String ioos_category "Location";
    String long_name "Latitude";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float32 actual_range -152.2782, -152.275;
    String axis "X";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String ioos_category "Location";
    String long_name "Longitude";
    String standard_name "longitude";
    String units "degrees_east";
  }
  sea_surface_swell_wave_significant_height {
    Float32 actual_range 0.003609, 3.706;
    Float64 colorBarMaximum 10.0;
    Float64 colorBarMinimum 0.0;
    String ioos_category "Surface Waves";
    String long_name "hauteur des vagues en surface";
    String standard_name "sea_surface_swell_wave_significant_height";
    String units "meter";
  }
  sea_surface_infragravity_waves_significant_height {
    Float32 actual_range 0.01487, 0.4948;
    Float64 colorBarMaximum 10.0;
    Float64 colorBarMinimum 0.0;
    String ioos_category "Surface Waves";
    String long_name "hauteur des vagues en surface infragravité";
    String standard_name "sea_surface_infragravity_waves_significant_height";
    String units "meter";
  }
  altitude {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "up";
    Float32 actual_range -0.16081, 0.59554;
    String axis "Z";
    String ioos_category "Location";
    String long_name "Surface Elevation";
    String positive "up";
    String source_name "surface_elevation";
    String standard_name "altitude";
    String units "m";
  }
 }
  NC_GLOBAL {
    String cdm_data_type "TimeSeries";
    String cdm_timeseries_variables "station_name,latitude,longitude";
    String contact "damien.sous@mio.osupytheas.fr";
    String contributor_name 
"maurice.libes@osupytheas.fr, celine.quentin@mio.osupytheas.fr
contributor_role=raw data conversion, and data formating in NetCDF\";";
    String Conventions "CF-1.6, ACDD-1.3, COARDS";
    String creator_email "damien.sous@mio.osupytheas.fr";
    String creator_name "Damien Sous";
    String creator_type "person";
    String creator_url "https://dataset.osupytheas.fr/geonetwork/srv/fre/catalog.search#/metadata/9db3bec4-0bbf-4531-8864-f100c4b8eced";
    String doi "https://doi.org/10.34930/9db3bec4-0bbf-4531-8864-f100c4b8eced";
    Float64 Easternmost_Easting -152.275;
    String featureType "TimeSeries";
    String featuretype "timeseries";
    Float64 geospatial_lat_max 16.4711;
    Float64 geospatial_lat_min -16.4699;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -152.275;
    Float64 geospatial_lon_min -152.2782;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 0.59554;
    Float64 geospatial_vertical_min -0.16081;
    String geospatial_vertical_positive "up";
    String geospatial_vertical_units "m";
    String history 
"The experimental strategy was to deploy a series of bottom-moored pressure sensors across the reef barrier to study the cross-reef evolution of wave energy and water level and a velocity profiler in the lagoon to quantify the cross-reef transport. The recovered data allowed to estimate the main terms of the wave-averaged depth-averaged momentum balance.
2024-10-10T14:51:46Z (local files)
2024-10-10T14:51:46Z http://erddap.osupytheas.fr/tabledap/Maupiti_nc_e6d1_11db_50f4.das";
    String infoUrl "https://dataset.osupytheas.fr/geonetwork/srv/fre/catalog.search#/metadata/9db3bec4-0bbf-4531-8864-f100c4b8eced";
    String institution "MIO UMR7294 CNRS / OSU Pytheas";
    String keywords "altitude, cnrs, data, des, earth, Earth Science > Oceans > Ocean Waves > Significant Wave Height, Earth Science > Oceans > Ocean Waves > Swells, elevation, files, hauteur, height, hoe, identifier, infragravit?, infragravity, latitude, longitude, maupiti, mio, name, ocean, ocean waves, oceans, oregon, osu, osu pytheas, pytheas, science, sea, sea_surface_infragravity_waves_significant_height, sea_surface_swell_wave_significant_height, sea_surface_wave_significant_height, significant, significant wave height, state, station, station_id, station_name, surface, surface waves, surface_elevation, swell, swells, time, umr, umr7294, university, vagues, wave, waves";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "The data may be used and redistributed for free but is not intended for legal use. These are raw and uncorrected data and  may contain inaccuracies. Neither the data Contributor, OSU Pytheas, CNRS, nor the French Government, nor any of their employees or contractors, makes any warranty, express or implied, including warranties of merchantability and fitness for a particular purpose, or assumes any legal liability for the accuracy, completeness, or usefulness, of this information.";
    Float64 Northernmost_Northing 16.4711;
    String project "Maupiti Hoe 2018 : High-resolution experimental survey of the Maupiti Island reef-lagoon system";
    String request_for_aknowledgement "If you use these data in publications or presentation, please acknowledge damien.sous@mio.osupytheas.fr (of OSU Pytheas).  Also, we would appreciate receiving a preprint and/or reprint of publications using the data for inclusion in our bibliography. Relevant publications should be sent to: damien.sous@mio.osupytheas.fr MIO UMR 7294 CNRS, Campus de Luminy 13288 Marseille cedex9";
    String source "MIO UMR 7294 CNRS";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing -16.4699;
    String standard_name_vocabulary "CF Standard Name Table v70";
    String subsetVariables "station_name, station_id, latitude, longitude";
    String summary "The scientific objectives of the project MAUPITI HOE are to understand the hydrodynamics of an archetypal reef-lagoon system of a high volcanic reef island. The physical functioning of the hydrosystem involves a fine coupling between water levels, waves (including wind, infragravity and VLF waves), currents and seabed structure (reef roughness). The present data focuses on the reef barrier dynamics";
    String time_coverage_end "2018-07-17T04:08:00Z";
    String time_coverage_start "2018-07-05T20:08:00Z";
    String title "Maupiti Hoe 2018 (NetCDF files)";
    Float64 Westernmost_Easting -152.2782;
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.23
Disclaimers | Privacy Policy | Contact