OSU Pytheas ERDDAP OSU Pytheas
Accès aux données environnementales...
log in    
Erddap est un produit développé par : NOAA ERD    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Zooplankton timeseries Marseille bay (NetCDF files) Subscribe RSS
Institution:  MIO UMR 7294 CNRS   (Dataset ID: mio_carlotti_zooplankton_54fe_0d31_5b8b)
Range: longitude = 5.29167 to 5.29167°E, latitude = 43.2417 to 43.2417°N, depth = 60.0 to 60.0m, time = 2005-02-10T00:00:00Z to 2020-12-16T00:00:00Z
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Subset | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  station_name {
    String cf_role "timeseries_id";
    String ioos_category "Identifier";
    String long_name "Station Name";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.1079936e+9, 1.6080768e+9;
    String axis "T";
    String calendar "julian";
    String ioos_category "Time";
    String long_name "datetime";
    String origin "01-JAN-1970 00:00:00";
    String source_name "datetime";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float32 actual_range 43.2417, 43.2417;
    String axis "Y";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String ioos_category "Location";
    String long_name "Latitude";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float32 actual_range 5.29167, 5.29167;
    String axis "X";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String ioos_category "Location";
    String long_name "Longitude";
    String standard_name "longitude";
    String units "degrees_east";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Int32 _FillValue 2147483647;
    Int32 actual_range 60, 60;
    String axis "Z";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String ioos_category "Location";
    String long_name "Depth";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  biomass_fraction_gt_2000_um {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 63.04;
    Float64 colorBarMaximum 1.0;
    Float64 colorBarMinimum 0.0;
    String ioos_category "Unknown";
    String long_name "biomass fraction > 2000 um";
    String standard_name "biomass fraction > 2000 um";
    String units "mg DW.m-3";
  }
  biomass_fraction_1000_2000_um {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 24.57;
    Float64 colorBarMaximum 1.0;
    Float64 colorBarMinimum 0.0;
    String ioos_category "Unknown";
    String long_name "biomass fraction 1000-2000 um";
    String standard_name "biomass fraction 1000-2000 um";
    String units "mg DW.m-3";
  }
  biomass_fraction_500_1000_um {
    Float32 _FillValue NaN;
    Float32 actual_range 0.04, 24.31;
    Float64 colorBarMaximum 1.0;
    Float64 colorBarMinimum 0.0;
    String ioos_category "Unknown";
    String long_name "biomass fraction 500-1000 um";
    String standard_name "biomass fraction 500-1000 um";
    String units "mg DW.m-3";
  }
  biomass_fraction_300_500_um {
    Float32 _FillValue NaN;
    Float32 actual_range 0.08, 14.8;
    Float64 colorBarMaximum 1.0;
    Float64 colorBarMinimum 0.0;
    String ioos_category "Unknown";
    String long_name "biomass fraction 300-500 um";
    String standard_name "biomass fraction 300-500 um";
    String units "mg DW.m-3";
  }
  biomass_fraction_200_300_um {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 22.92;
    Float64 colorBarMaximum 1.0;
    Float64 colorBarMinimum 0.0;
    String ioos_category "Unknown";
    String long_name "biomass fraction 200-300 um";
    String standard_name "biomass fraction 200-300 um";
    String units "mg DW.m-3";
  }
  biomass_fraction_80_200_um {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 5.43;
    Float64 colorBarMaximum 1.0;
    Float64 colorBarMinimum 0.0;
    String ioos_category "Unknown";
    String long_name "biomass fraction 80-200 um";
    String standard_name "biomass fraction 80-200 um";
    String units "mg DW.m-3";
  }
  Total_biomass {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 74.06;
    String ioos_category "Unknown";
    String long_name "total biomass";
    String standard_name "total biomass";
    String units "mg DW.m-3";
  }
  Bivalvia {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 140.19;
    String ioos_category "Unknown";
    String long_name "Bivalvia abundance";
    String standard_name "sdn:p01::z510m00z";
    String units "nb.m-3";
  }
  Chaetognatha {
    Float32 _FillValue NaN;
    Float32 actual_range 0.14, 105.08;
    String ioos_category "Unknown";
    String long_name "Chaetognatha abundance";
    String standard_name "sdn:p01::z130m00z";
    String units "nb.m-3";
  }
  Calanoida {
    Float32 _FillValue NaN;
    Float32 actual_range 59.74, 12955.07;
    String ioos_category "Unknown";
    String long_name "Calanoida";
    String standard_name "sdn:p01::z366m00z";
    String units "nb.m-3";
  }
  Oithonoida {
    Float32 _FillValue NaN;
    Float32 actual_range 7.27, 979.79;
    String ioos_category "Unknown";
    String long_name "Oithonoida abundance";
    String standard_name "sdn::p01:z306m00z";
    String units "nb.m-3";
  }
  Ergasilida {
    Float32 _FillValue NaN;
    Float32 actual_range 7.98, 554.62;
    String ioos_category "Unknown";
    String long_name "Ergasilida abundance";
    Float64 standard_name NaN;
    String units "nb.m-3";
  }
  Harpacticoida {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 185.36;
    String ioos_category "Unknown";
    String long_name "Harpacticoida abundance";
    String standard_name "sdn:p01::z363m00z";
    String units "nb.m-3";
  }
  Fish_Eggs {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 117.77;
    String ioos_category "Biology";
    String long_name "Fish Eggs abundance";
    String standard_name "sdn:p01::z830m00t";
    String units "nb.m-3";
  }
  Nauplii {
    Float32 _FillValue NaN;
    Float32 actual_range 3.14, 316.59;
    String ioos_category "Unknown";
    String long_name "Nauplii abundance";
    String standard_name "sdn:p01::zu03m00z";
    String units "nb.m-3";
  }
  Salpida {
    Float32 _FillValue NaN;
    Float32 actual_range 0.21, 203.03;
    String ioos_category "Unknown";
    String long_name "Salpida abundance";
    String standard_name "sdn:p01::sal10052";
    String units "nb.m-3";
  }
  Crustacea {
    Float32 _FillValue NaN;
    Float32 actual_range 3.56, 1811.7;
    String ioos_category "Unknown";
    String long_name "Crustacea abundance";
    String standard_name "sdn:p01::acr01605";
    String units "nb.m-3";
  }
  Pteropoda {
    Float32 _FillValue NaN;
    Float32 actual_range 0.29, 435.24;
    String ioos_category "Unknown";
    String long_name "Pteropoda abundance";
    String standard_name "sdn:p01::c97a5113";
    String units "nb.m-3";
  }
  Appendicularia {
    Float32 _FillValue NaN;
    Float32 actual_range 0.29, 1068.9;
    String ioos_category "Unknown";
    String long_name "Appendicularia abundance";
    String standard_name "sdn:p01::g146m00z";
    String units "nb.m-3";
  }
  Cnidaria {
    Float32 _FillValue NaN;
    Float32 actual_range 2.28, 250.36;
    String ioos_category "Unknown";
    String long_name "Cnidaria abundance";
    String standard_name "sdn:p01::acx08115";
    String units "nb.m-3";
  }
  Others {
    Float32 _FillValue NaN;
    Float32 actual_range 5.28, 574.13;
    String ioos_category "Unknown";
    String long_name "others groups abundance";
    String standard_name "others groups abundance";
    String units "nb.m-3";
  }
  Total_Abundance {
    Float32 _FillValue NaN;
    Float32 actual_range 115.63, 14611.95;
    String ioos_category "Unknown";
    String long_name "total abundance";
    String standard_name "total abundance";
    String units "nb.m-3";
  }
 }
  NC_GLOBAL {
    String cdm_data_type "TimeSeries";
    String cdm_timeseries_variables "station_name,latitude,longitude";
    String contact "francois.carlotti@mio.osupytheas.fr";
    String contributor_name "maurice.libes@osupytheas.fr";
    String contributor_name2 "Loic Guilloux; Theo Garcia; Salome Chen; Katty Donoso; Antoine Nowaxzyk; Virginie Riandey; Emmanuel Dieval; Karim Morsly; Nada Neffati; Baptiste Lebourg; Antony Dron";
    String contributor_role "raw data conversion, and data formating in NetCDF";
    String contributor_role2 "sampling and processing of the samples";
    String Conventions "SeaDataNet_1.0,COARDS, CF-1.10, ACDD-1.3";
    String creator_email "francois.carlotti@mio.osupytheas.fr";
    String creator_name "Francois Carlotti";
    String creator_type "person";
    String data_type "time-series data";
    String date_created "2023-07-19";
    String defaultGraphQuery "time%2Cbiomass_fraction_80_200_um%2C&.draw=linesAndMarkers&.marker=6|3&.color=0x000000&.colorBar=|||||&.bgColor=0xffccccff";
    String doi "10.34930/6da3237c-4732-4c71-b7f1-140c7b2dcdaa";
    Float64 Easternmost_Easting 5.29167;
    String featureType "TimeSeries";
    String featuretype "timeseries";
    Float64 geospatial_lat_max 43.2417;
    Float64 geospatial_lat_min 43.2417;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max 5.29167;
    Float64 geospatial_lon_min 5.29167;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 60.0;
    Float64 geospatial_vertical_min 60.0;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"The sampling is carried out twice a month at a fixed station in the center of the bay of Marseille (43.2417 N; 5.29167 E) with a depth of 60m (see https://www.somlit.fr/marseille/ ).  The WP2 net (200?m mesh) is hauled vertically from 55 to the surface. Sample preserved in 4% buffered formalin and stored over the long term at the MIO.  Sample have bee scanned on a ZooScan, images processed with ZooProcess and sorted taxonomically on Particle Trieur, within the Plateforme Microscopie et IMagerie (MIM).
2024-10-09T10:53:47Z (local files)
2024-10-09T10:53:47Z http://erddap.osupytheas.fr/tabledap/mio_carlotti_zooplankton_54fe_0d31_5b8b.das";
    String infoUrl "https://dataset.osupytheas.fr/geonetwork/srv/fre/catalog.search#/metadata/6da3237c-4732-4c71-b7f1-140c7b2dcdaa";
    String institution "MIO UMR 7294 CNRS";
    String institution_edmo_code "3078";
    String institution_edmo_uri "https://edmo.seadatanet.org/report/3078";
    String keywords "abundance, abundances, acr01605, acx08115, appendicularia, baie de marseille, bay, biology, biomass, bivalvia, c97a5113, calanoida, chaetognatha, cnidaria, cnrs, crustacea, data, depth, eggs, ergasilida, files, fish, Fish_Eggs, fraction_1000_2000_um, fraction_2000_um, fraction_200_300_um, fraction_300_500_um, fraction_500_1000_um, fraction_80_200_um, g146m00z, groups, harpacticoida, identifier, latitude, longitude, marseille, mio, name, nauplii, oithonoida, osu pytheas, others, others groups abundance, p01, pteropoda, sal10052, salpida, sdn, sdn::p01:z306m00z, sdn:p01::acr01605, sdn:p01::acx08115, sdn:p01::c97a5113, sdn:p01::g146m00z, sdn:p01::sal10052, sdn:p01::z130m00z, sdn:p01::z363m00z, sdn:p01::z366m00z, sdn:p01::z510m00z, sdn:p01::z830m00t, sdn:p01::zu03m00z, serie temporelle, size fractions, station, station_name, time, timeserie, timeseries, total, total abundance, total biomass, Total_Abundance, Total_biomass, umr, z130m00z, z306m00z, z363m00z, z366m00z, z510m00z, z830m00t, zooplancton, zooplankton, zu03m00z";
    String license "CC-BY-4.0";
    String license_uri "https://creativecommons.org/licenses/by/4.0/";
    String network "SOMLIT https://www.somlit.fr/marseille/";
    Float64 Northernmost_Northing 43.2417;
    String principal_investigator "Francois Carlotti";
    String principal_investigator_email "francois.carlotti@mio.osupytheas.fr";
    String project "SOMLIT : Zooplankton timeseries Marseille bay";
    String qc_indicator "good values";
    String request_for_aknowledgement "If you use these data in publications or presentation, please acknowledge francois.carlotti@mio.osupytheas.fr (of OSU Pytheas).  Also, we would appreciate receiving a preprint and/or reprint of publications using the data for inclusion in our bibliography. Relevant publications should be sent to: patrick.raimbault@mio.osupytheas.fr MIO UMR 7294 CNRS, Campus de Luminy 13288 Marseille cedex9";
    String source "MIO UMR 7294 CNRS";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 43.2417;
    String standard_name_vocabulary "CF Standard Name Table v70";
    String subsetVariables "station_name, latitude, longitude, depth";
    String summary "This series is part of the long-term planktonic monitoring of Marseille Oceanographic Laboratories (successively Centre Océanographique de Marseille, Laboratoire d’Océanographie Biologique, Laboratoire d’Océanographie Physique et Biogéochimique, and presently Mediterranean Institute of oceanography / OSU Pytheas ).  It aims at describing the dynamics of the mesozooplankton community both in term of biomass and taxonomic groups.  This dataset contains the planktonic organisms collected by a WP2 net (Diameter 55 cm; Length : 3 m; Mesh size: 200μm mesh) and therefore covering zooplanktonic organisms from 200µm to ~2cm.  The sampling is carried out twice a month at a fixed station in the center of the bay of Marseille (43.2417°N; 5.29167°E) with a depth of 60m (see https://www.somlit.fr/marseille/ ).  The WP2 net (200μm mesh) is hauled vertically from 55 to the surface. Sample preserved in 4% buffered formalin and stored over the long term at the MIO.  Sample have bee scanned on a ZooScan, images processed with ZooProcess and sorted taxonomically on Particle Trieur, within the Plateforme Microscopie et IMagerie (MIM).  The data collection and processing has been funded by several projects over its lifetime. It is currently supported directly by the Mediterranean Institute of oceanography (MIO), as part of its long-term monitoring effort associated with SOMLIT. (https://www.somlit.fr/marseille/). Sont remerciés pour leur contributions à l’échantillonnage et/ou au traitement des échantillons Loic Guilloux; Theo Garcia; Salome Chen; Katty Donoso; Antoine Nowaxzyk; Virginie Riandey; Emmanuel Dieval; Karim Morsly; Nada Neffati; Baptiste Lebourg; Antony Dron";
    String time_coverage_end "2020-12-16T00:00:00Z";
    String time_coverage_start "2005-02-10T00:00:00Z";
    String title "Zooplankton timeseries Marseille bay (NetCDF files)";
    Float64 Westernmost_Easting 5.29167;
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.23
Disclaimers | Privacy Policy | Contact